Home
Class 12
MATHS
xsqrt(1+2x^(2))...

`xsqrt(1+2x^(2))`

Text Solution

AI Generated Solution

To solve the integral \( \int x \sqrt{1 + 2x^2} \, dx \), we will follow these steps: ### Step 1: Substitution Let \( t = 1 + 2x^2 \). Then, we differentiate \( t \) with respect to \( x \): \[ dt = 4x \, dx \quad \Rightarrow \quad dx = \frac{dt}{4x} \] From the substitution, we can express \( x \, dx \) as: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.3|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.4|25 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.1|22 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

y = sin ^(-1)(2xsqrt(1 - x^(2))),-(1)/sqrt(2) lt x lt (1)/sqrt(2)

Draw the graph of y=sin^(-1)(2xsqrt(1-x^(2)))

If sin ^(-1) x=(1)/(3) , then evaluate sin ^(-1) (2xsqrt(1-x^(2)))

If sin^(-1)(2xsqrt(1-x^(2)))-2 sin^(-1) x=0 then x belongs to the interval

If -1 le x le -(1)/sqrt(2) then sin^(-1)2xsqrt(1-x^(2)) equals

If (1)/sqrt(2) le x le 1 then sin^(-1) 2xsqrt(1-x^(2)) equals

If f(x)=sin^(-1)(2xsqrt(1-x^(2))), x in [-1,1] . Then

The value of int _(-1)^(1) (x)/(sqrt(1-x^(2))). sin^(-1) (2xsqrt(1-x^(2)))dx is equal to

Express in terms of : sin^(-1)(2xsqrt(1-x^(2))) to sin^(-1)x for 1gexgt1/(sqrt(2))

Evaluate int_(0)^(1)1/(sqrt(1-x^(2))"sin"^(-1)(2xsqrt(1-x^(2)))dx .