Home
Class 12
MATHS
int(e^x(1+x)/(cos^2(e^xx)dx equals (A) -...

`int(e^x(1+x)/(cos^2(e^xx)dx` equals (A) `-cot(e x^x)+C` (B) `tan(x e^x)+C` (C) `tan(e^x)+C` (D) `cot(e^x)+C`

Text Solution

Verified by Experts

The correct Answer is:
b

`int (e^(x) (1+x))/(cos^(2) (e^(x)x))dx " "underset(rArr e^(x) (1+x)dx=dt)underset(rArr (e^(x) +xe^(x))dx=dt)("Let " e^(x) .x=t)`
` = int (1)/(cos^(2)t) dt = int sec^(2) t dt`
` = tan t+c = tan (xe^(x)) +c`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.4|25 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.5|23 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.2|39 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int(e^x(1+x))/(cos^2 (e^x * x) )dx equals(A) -cot(e x^x)+C (B) tan(x e^x)+C (C) tan(e^x)+C (D) cot(e^x)+C

int(e^x(1+x))/(cos^2(x e^x))\ dx= (a) 2(log)_ecos(x e^x)+C (b) sec(x e^x)+C (c) tan(x e^x)+C (d) tan(x+e^x)+C

Choose the correct answers int(dx)/(e^x+e^(-x)) is equal to(A) tan^(-1)(e^x)+C (B) tan^(-1)(e^(-x))+C (C) log(e^x-e^(-x))+C (D) log(e^x+e^(-x))+C

The value of int_0^(pi/4) (e^(1/(cos^2x)).sinx)/(cos^3 x)dx equals (A) (e^2-e)/2 (B) (e^4-1)/4 (C) (e^2+e)/4 (D) (e^4-1)/2

int e^x ((1-sinx)/(1-cosx)) dx= (A) e^xtan(x/2)+C (B) e^xcot(x/2)+C (C) -1/2 e^xtan(x/2)+C (D) -1/2 e^xcot(x/2)+C

Choose the correct answer intx^2e^(x^3)dx equals(A) 1/3e^(x^3) +C (B) 1/3e^(x^2)+C (C) 1/2e^(x^3)+C (D) 1/2e^(x^2)+C

The integral int(1+x-1/x)e^(x+1/x)dx is equal to (1) (x-1)e^(x+1/x)+C (2) x e^(x+1/x)+C (3) (x+1)e^(x+1/x)+C (4) -x e^(x+1/x)+C

int( x-1)e^(-x) dx is equal to : a) ( x- 2)e^(x) + C b) x e^(-x) + C c) - x e^(x) + C d) ( x+1)e^(-x) +C

If int(xe^(x))/(sqrt(1+e^(x)))dx=f(x)sqrt(1+e^(x))-2logg(x)+C , then

int(x-1)\ e^(-x)\ dx is equal to x e^x+C (b) x e^x+C (c) -x e^(-x)+C (d) x e^(-x)+C