Home
Class 12
MATHS
int(dx)/(x^2+2x+2)equals(A) xtan^(-1)(x+...

`int(dx)/(x^2+2x+2)`equals(A) `xtan^(-1)(x+1)+C` (B) `tan^(-1)(x+1)+C`(C) `(x+1)tan^(-1)x+C` (D) `tan^(-1)x+C`

Text Solution

Verified by Experts

The correct Answer is:
b

`int (1)/(x^(2) +2x+2)dx = int (1)/((x^(2)+2x+1)+1)dx`
`= int (1)/((x+1)^(2)+1^(2))dx`
`=tan^(-1) (x+1)+c`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.5|23 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.6|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.3|24 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Choose the correct answers int(dx)/(e^x+e^(-x)) is equal to(A) tan^(-1)(e^x)+C (B) tan^(-1)(e^(-x))+C (C) log(e^x-e^(-x))+C (D) log(e^x+e^(-x))+C

int e^(tan^(-1)x)(1+x+x^2)d(cot^(-1)x) is equal to (a) -e^(tan^(-1)x)+c (b) e^(tan^(-1)x)+c (c) -xe^(tan^(-1)x)+c (d) xe^(tan^(-1)x)+c

int ((tan^(-1) x )^(3))/( 1+x^(2)) dx is equal to a) 3 ( tan^(-1) x )^(2) +C b) (1)/(4) ( tan^(-1)x)^(4) +C c) ( tan^(-1) x)^(4) + C d) none of these

int(dx)/(ax^(2)+bx+c)=k_(1)tan^(-1)(x+A)/(B)+C if

(3) int(dx)/(x^(2)+a^(2))=(1)/(a)tan^(-1)(x/a)+C

The solution of the differential equation (dy)/(dx)=(x^2+x y+y^2)/(x^2), is a.) tan^(-1)(x/y)=logy+C b.) tan^(-1)(y/x)=logx+C c.) tan^(-1)(x/y)=logx+C d.) tan^(-1)(y/x)=logy+C

int(e^x(1+x))/(cos^2 (e^x * x) )dx equals(A) -cot(e x^x)+C (B) tan(x e^x)+C (C) tan(e^x)+C (D) cot(e^x)+C

int\ (tan^(-1)x - cot^(-1)x)/(tan^(-1)x + cot^(-1)x) \ dx equals

int(x^2+2)/(x^4+4)dx is equal to (a) 1/2tan^(-1)((x^2-2)/(2x))+c (b) 1/2tan^(-1)((2x)/(x^2+2))+c (c) 1/2tan^(-1)((2x)/(x^2-2))+c (d) 1/2tan^(-1)(x^2+2)+c

The solution of the differential equation (1+x^2)(dy)/(dx)+1+y^2=0, is a) tan^(-1)x-tan^(-1)y=tan^(-1)C b) tan^(-1)y-tan^(-1)x=tan^(-1)C c) tan^(-1)y+-tan^(-1)x=tan^(\ )C d) tan^(-1)y+tan^(-1)x=tan^(-1)C