Home
Class 12
MATHS
(1)/((e^(x)-1))...

`(1)/((e^(x)-1))`

Text Solution

AI Generated Solution

To solve the integral \(\int \frac{1}{e^x - 1} \, dx\), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{1}{e^x - 1} \, dx \] We can manipulate the integrand by multiplying the numerator and denominator by \(e^x\): ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.6|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.7|11 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.4|25 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Using L Hospital rule evaluate lim_(xrarr0) (e^(x)-1-x)/(x(e^(x)-1))

Show that the function f(x) given by f(x)={((e^(1/x)-1)/(e^(1/x)+1), when x!=0), (0, when x=0):} is discontinuous at x=0 .

If e^x+e^y=e^(x+y) , prove that (dy)/(dx)=-(e^x(e^y-1))/(e^y(e^x-1))

Show that lim_(xto0) (e^(1//x)-1)/(e^(1//x)+1) does not exist.

The function f(x)={(e^(1/x)-1)/(e^(1/x)+1),x!=0 \ \ \ \ \ \ \ 0,x=0 at x=0

Discuss the conttinuity of f(x) ={{:((x-1)/(e^((1)/(x-1))),x=0),(0,x=0):} at x=1.

Integrate the functions (e^(2x)-1)/(e^(2x)+1)

Integrate the functions (e^(2x)-1)/(e^(2x)+1)

(iii) int(e^(x)-1)/(1-e^(-x))dx

The function f(x)={(e^(1/x)-1)/(e^(1/x)+1),x!=0 0,x=0 (a)is continuous at x=0 (b)is not continuous at x=0 (c)is not continuous at x=0, but can be made continuous at x=0 (d) none of these