Home
Class 12
MATHS
int(0)^(pi/2) cos^(2) x dx...

`int_(0)^(pi/2) cos^(2) x dx`

Text Solution

AI Generated Solution

To solve the integral \( I = \int_{0}^{\frac{\pi}{2}} \cos^2 x \, dx \), we can use a property of definite integrals and some trigonometric identities. Here’s the step-by-step solution: ### Step 1: Set up the integral We start with the integral: \[ I = \int_{0}^{\frac{\pi}{2}} \cos^2 x \, dx \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|44 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.10|10 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//4) cos^(2) x dx

int_(0)^(pi/2) cos 2x dx

Evaluate: int_(0)^(pi//2) cos2x dx

Prove that : int_(0)^(pi) x cos^(2) x dx =(pi^(2))/(4)

int_(0)^(pi//2) cos 3x dx

If I_(1)=int_(0)^(pi//2) cos(sin x) dx,I_(2)=int_(0)^(pi//2) sin (cos x) dx and I_(3)=int_(0)^(pi//2) cos x dx then

int_(0)^(pi/2)(cos^(5)x dx)/(sin^(5)x+cos^(5)x)

int_(0)^(pi//2) (a cos^(2) x+b sin^(2) x) dx

Evaluate int _(0)^(pi//2)cos x dx

Integrate the following functions int_(0)^(pi//2) " cos x dx"