Home
Class 12
MATHS
int2^8|x-5|dx...

`int_2^8|x-5|dx`

Text Solution

AI Generated Solution

To solve the integral \( \int_2^8 |x-5| \, dx \), we will follow these steps: ### Step 1: Determine where the expression inside the modulus changes sign The expression \( |x-5| \) changes sign at \( x = 5 \). Therefore, we will break the integral into two parts: from 2 to 5 and from 5 to 8. ### Step 2: Rewrite the integral based on the intervals For \( x < 5 \) (from 2 to 5), \( |x-5| = -(x-5) = 5-x \). For \( x \geq 5 \) (from 5 to 8), \( |x-5| = x-5 \). ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|44 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.10|10 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following: int_0^8 |x-5|dx

6. int_(2)^(8)|x-5|dx

Evaluate: int_(2)^(8)|x-5|dx

Evaluate: int_0^1|5x-3|dx (ii) int_0^pi|cosx|dx (iii) int_(-5)^5|x-2|dx (iv) int_(-1)^1e^(|x|)dx (v) int_0^2|x^2+2x-3|dx (v) int_1^4(|x-1|+|x-2|+|x-3|)dx (vi) int_(-1)^2|x^3-x|dx

Evaluate : int_(0)^(8) |x-5|dx

int_- 5^5|x+2|dx

inte^(2x+5) dx

int (7-2x)^5 dx

int (7-2x)^5 dx

Evaluate: int_3^5(2-x)dx