Home
Class 12
MATHS
int(0)^(2) xsqrt(2-x)dx...

`int_(0)^(2) xsqrt(2-x)dx`

Text Solution

AI Generated Solution

To solve the integral \( I = \int_{0}^{2} x \sqrt{2 - x} \, dx \), we will use the substitution method. Here are the steps: ### Step 1: Substitution Let \( t = 2 - x \). Then, differentiate both sides to find \( dx \): \[ dx = -dt \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|44 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.10|10 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(2) sqrt(2-x)dx .

The value of int_(0)^(3) xsqrt(1+x)dx , is

int_(0)^(2) sqrt((2+x)/(2-x)) dx

int_0^2 xsqrt(x+2)dx

int_(2)^(0) x(2-x)^4 dx

Evaluate int_(0)^(2)2^(x)dx

If y = int_(1)^(x) xsqrt(lnt)dt then find the value of (d^(2)y)/(dx^(2)) at x = e

int_(0)^(2) [x^(2)]dx is equal to

int_(0)^(sqrt(2)) [x^(2)]dx , is

int_(0)^(2) |x^(2)+2x-3|dx is equal to