Home
Class 12
MATHS
int(0)^(4) |x-1|dx...

`int_(0)^(4) |x-1|dx`

Text Solution

Verified by Experts

`" Let I "= int_(0)^(4) |x-1|dx`
`:. I= int_(0)^(1) |x-1|dx+int _(1)^(4) |x-1|dx`
`=int_(0)^(1) (1-x)dx+ int_(1)^(4) (x-1) dx`
`=[x-(x^(2))/(2)]_(0)^(1) +[(x^(2))/(2)-x]_(1)^(4)`
`=(1-(1)/(2))-0+((4^(2))/(2)-x)-((1)/(2)-1)`
`=(1)/(2)+4+(1)/(2)=5`
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|44 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7.10|10 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(4)(|x-1|+|x-3|)dx

int_(0)^(1) x dx

Evaluate : int_(0)^(4) x(4-x)^(3//2)dx

int_(0)^(1) |5x -3 | dx =?

int_(0)^(4)({[x]})dx

int_(0)^(1)x^2dx

Evaluate the following integral: int_0^4|x-1|dx

Statement-1: int_(0)^(pi//2) (1)/(1+tan^(3)x)dx=(pi)/(4) Statement-2: int_(0)^(a) f(x)dx=int_(0)^(a) f(a+x)dx

int_(0)^(1) (x)/(1-x)^(3//4)dx=

If I=int_(0)^(1) (dx)/(1+x^(4)) , then