Home
Class 12
MATHS
If A= {x,y,z}, B=(1,2,3} and R= {(x,2),(...

If A= {x,y,z}, B=(1,2,3} and R= {(x,2),(y,3),(z,1),(z,2), then find `R^(-1)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the relation \( R \), we need to swap the elements in each ordered pair of the relation. Let's go through the steps to find \( R^{-1} \). ### Step-by-step Solution: 1. **Identify the sets and the relation**: - Set \( A = \{x, y, z\} \) - Set \( B = \{1, 2, 3\} \) - Relation \( R = \{(x, 2), (y, 3), (z, 1), (z, 2)\} \) 2. **Understand the definition of the inverse relation**: - The inverse relation \( R^{-1} \) consists of ordered pairs where the first element is from set \( B \) and the second element is from set \( A \). Specifically, if \( (a, b) \in R \), then \( (b, a) \in R^{-1} \). 3. **Swap the elements in each ordered pair of \( R \)**: - For the pair \( (x, 2) \), the inverse will be \( (2, x) \). - For the pair \( (y, 3) \), the inverse will be \( (3, y) \). - For the pair \( (z, 1) \), the inverse will be \( (1, z) \). - For the pair \( (z, 2) \), the inverse will be \( (2, z) \). 4. **Compile the inverse relation**: - Now we can write the inverse relation \( R^{-1} \): \[ R^{-1} = \{(2, x), (3, y), (1, z), (2, z)\} \] 5. **Final result**: - Therefore, the inverse of the relation \( R \) is: \[ R^{-1} = \{(2, x), (3, y), (1, z), (2, z)\} \]
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 1b|20 Videos
  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercies 1c|9 Videos
  • RELATIONS AND FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • PROBABIILITY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|19 Videos
  • THREE-DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|23 Videos

Similar Questions

Explore conceptually related problems

The determinant |[ C(x,1) ,C(x,2), C(x,3)] , [C(y,1) ,C(y,2), C(y,3)] , [C(z,1) ,C(z,2), C(z,3)]|= (i) 1/3xyz(x+y)(y+z)(z+x) (ii) 1/4xyz(x+y-z)(y+z-x) (iii) 1/12xyz(x-y)(y-z)(z-x) (iv) none

If {:[(x+y,y-z),(z-2x,y-x)]:}={:[(3,-1),(1,1)]:} , then

If x + y + z = 12, x^(2) + Y^(2) + z^(2) = 96 and (1)/(x)+(1)/(y)+(1)/(z)= 36 . Then find the value x^(3) + y^(3)+z^(3).

If 2[{:(,3,x),(,0,1):}]+3[{:(,1,3),(,y,2):}]=[{:(,z,-7),(,15,8):}] , find the values of x, y and z.

Given [{:(,x,y+2),(,3,z-1):}] =[{:(,3,1),(,3,2):}] find x,y and z.

For x_(1), x_(2), y_(1), y_(2) in R if 0 lt x_(1)lt x_(2)lt y_(1) = y_(2) and z_(1) = x_(1) + i y_(1), z_(2) = x_(2)+ iy_(2) and z_(3) = (z_(1) + z_(2))//2, then z_(1) , z_(2) , z_(3) satisfy :

Find x ,\ y ,\ z ,\ t if 2[(x, z ),(y ,t)]+3[(1,-1),( 0, 2)]=3[(3, 5),( 4 ,6)] .

If x , y ,z in [-1,1] such that cos^(-1)x+cos^1y+cos^(-1)z=3pi, then find the values of (1) x y+y z+z y and (2) x(y+z)+y(z+x)+z(x+y)

If x , y ,z in [-1,1] such that cos^(-1)x+cos^1y+cos^(-1)z=3pi, then find the values of (1). x y+y z+z y and (2). x(y+z)+y(z+x)+z(x+y)

If x , y ,z in [-1,1] such that cos^(-1)x+cos^1y+cos^(-1)z=3pi, then find the values of (1) x y+y z+z x and (2) x(y+z)+y(z+x)+z(x+y)

NAGEEN PRAKASHAN ENGLISH-RELATIONS AND FUNCTIONS -Exercies 1a
  1. Give an example of a relation. Which is (i) Symmetric but neither r...

    Text Solution

    |

  2. If A= {x,y,z}, B=(1,2,3} and R= {(x,2),(y,3),(z,1),(z,2), then find R^...

    Text Solution

    |

  3. Prove that the relation R on Z defined by (a ,\ b) in RhArr a-b is di...

    Text Solution

    |

  4. Prove that the relation R={(x,y): x, y in N and x-y " is divisible by ...

    Text Solution

    |

  5. (i) Prove that the relation ""(x)R(y) iff 3 is a factor of (x-y) , de...

    Text Solution

    |

  6. If I is the set of real numbers, then prove that the relation R={(x,y)...

    Text Solution

    |

  7. If A={a,b,c,d}, then on A . (i) write the identity relation I(A) . ...

    Text Solution

    |

  8. Show that the relation geq on the set R of all real numbers is ref...

    Text Solution

    |

  9. Let O be the origin. We define a relation between two points P and ...

    Text Solution

    |

  10. Let N be the set of all natural numbers and let R be a relation on Nxx...

    Text Solution

    |

  11. (i) Show that in the set of positive integer, the relation ' greater t...

    Text Solution

    |

  12. Show that the relation is congruent to on the set of all triangles ...

    Text Solution

    |

  13. Show that the relation geq on the set R of all real numbers is ref...

    Text Solution

    |

  14. Let R be relation difined on the set of natural number N as follows, R...

    Text Solution

    |

  15. Let a relation R be defined by relation The R = {(4, 5), (1,4), (4, 6)...

    Text Solution

    |

  16. If A={1,2,3,5}, B={2,4,6,8} and C={4,16,36,39} are three sets and R i...

    Text Solution

    |

  17. Show that the relation R in the set R of real numbers, defined at R={...

    Text Solution

    |

  18. If R1and R2are equivalence relations in a set A, show that R1nnR2is ...

    Text Solution

    |