Home
Class 12
MATHS
Prove that : tan^-1 x +tan^-1 2x/(1-x^2)...

Prove that : `tan^-1 x +tan^-1 2x/(1-x^2) = tan^-1 ((3x-x^3)/(1-3x^2)), |x| < 1/sqrt3`

Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Prove that 3 tan^-1 x = tan^-1(3x-x^3)/(1-3x^2), |x| < 1/sqrt3

Prove that : tan^-1 x + cot^-1(x+1) = tan^-1(x^2 + x +1)

Prove that 2 tan^-1 (1/x) = sin^-1 ((2x)/(1+x^2)), |x| ge 1

Prove that : tan^-1((6x-8x^3)/(1-12x^2))- tan^-1(4x/(1-4x^2)) = tan^-1 2x,|2x| < 1/sqrt3

Prove that tan^-1(1+x)/(1-x) = pi/4 + tan^-1x, x < 1

Prove that : tan^-1((1-x)/(1+x))= pi/4 - tan^-1 x

Differentiate tan^(-1) ((3x - x^3)/(1 - 3x^2)) w.r.t. tan^(-1)((2x)/(1 - x^2))

Prove that tan(sin^-1 x) = (x/(sqrt 1-x^2)), 1 x 1 < 1

Solve the Equation : tan^-1 ((x-1)/(x+2)) + tan^-1 ((2x-1)/(2x+1)) = tan^-1 23/36

Let tan^(-1) y = tan^(-1) x + tan^(-1) ((2x)/(1 -x^(2))), " where " |x| lt (1)/(sqrt3) . Then a value of y is