Home
Class 12
MATHS
Evaluate : triangle = |[1,a,bc],[1,b,ca]...

Evaluate : `triangle = |[1,a,bc],[1,b,ca],[1,c,ab]|`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    PSEB|Exercise Exercise|101 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    PSEB|Exercise Exercise|151 Videos
  • DIFFERENTIAL EQUATIONS

    PSEB|Exercise Exercise|116 Videos

Similar Questions

Explore conceptually related problems

Prove that |[1,a,a^2-bc],[1,b,b^2-ca],[1,c,c^2-ab]|= 0

Without expanding the determinant, prove that |[a,a^2,bc],[b,b^2,ca],[c,c^2,ab]| = |[1,a^2,a^3],[1,b^2,b^3],[1,c^2,c^3]|

Using the property of determinants and without expanding , prove that: |[1,bc,a(b+c)],[1,ca,b(c+a)],[1,ab,c(a+b]| = 0

Find the minors and cofactos of each entry of the first column of the matrix A ad hence find the value of the determinant in each case: A = [(1,a,bc),(1,b,ca),(1,c,ab)]

Find the minor and co-factor of each element of the first column of the following determinants: {:|(1,a,bc),(a,b,ca),(1,c,ab)| Hence or otherwise evaluate them.

Prove that: {:|(1,a,bc),(1,b,ca),(1,c,ab)|=(a-b)(b-c)(c-a)

Prove that: |[a^2+1,ab,ac],[ab,b^2+1,bc],[ac,bc,c^2+1]|=|[a^2+1,b^2,c^2],[a^2,b^2+1,c^2],[a^2,b^2,c^2+1]|=1+a^2+b^2+c^2

Using the properties of determinant, show that : |[a^2+1,ab,ac],[ab,b^2+1,bc],[ac,bc,c^2+1]| = 1+a^2+b^2+c^2

Without actual expansion, prove that the following determinants vanish: {:|(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab)|

Using the properties of determinants show that : |[[a^2, b^2, c^2],[bc,ca,ab],[a,b,c]]|=(a-b)(b-c)(c-a)(ab+bc+ca)

PSEB-DETERMINANTS-Exercise
  1. Evaluate : triangle = |[1,a,bc],[1,b,ca],[1,c,ab]|

    Text Solution

    |

  2. Evaluate the determinant : |[2,4],[-5,-1]|

    Text Solution

    |

  3. Evaluate the determinant: |[costheta,-sintheta],[sintheta,costheta]|

    Text Solution

    |

  4. Evaluate the determinant : |[x^2-x+1,x+1],[x+1,x+1]|

    Text Solution

    |

  5. If A = [[1,2],[4,2]], then show that |2A| = 4|A|

    Text Solution

    |

  6. If A = [[1,0,1],[0,1,2],[0,0,4]] then show that |3A| = 27|A|

    Text Solution

    |

  7. Evaluate the determinant : |[3,-1,-2],[0,0,-1],[3,-5,0]|

    Text Solution

    |

  8. Evaluate the determinant : |[3,-4,5],[1,1,-2],[2,3,1]|

    Text Solution

    |

  9. Evaluate the determinant : |[0,1,2],[-1,0,-3],[-2,3,0]|

    Text Solution

    |

  10. Evaluate the determinant : |[2,-1,-2],[0,2,-1],[3,-5,0]|

    Text Solution

    |

  11. If A = [[1,1,-2],[2,1,-3],[5,4,-9]], find |A|

    Text Solution

    |

  12. Find values of x, if : |[2,4],[5,1]| = |[2x,4],[6,x]|

    Text Solution

    |

  13. Find values of x, if : |[2,3],[4,5]| = |[x,3],[2x,5]|

    Text Solution

    |

  14. If |[x,2],[18,x]| = |[6,2],[18,6]|, then x is equal to:

    Text Solution

    |

  15. Using the property of determinants and without expanding , prove that:...

    Text Solution

    |

  16. Using the property of determinants and without expanding , prove that:...

    Text Solution

    |

  17. Using the property of determinants and without expanding , prove that:...

    Text Solution

    |

  18. Using the property of determinants and without expanding , prove that:...

    Text Solution

    |

  19. Using the property of determinants and without expanding , prove that:...

    Text Solution

    |

  20. Using the property of determinants and without expanding , prove that:...

    Text Solution

    |

  21. Prove that: |[-a^2, ab,ac],[ba,-b^2,bc],[ca,cb,-c^2]|=4a^2b^2c^2

    Text Solution

    |