Home
Class 12
MATHS
If a, b and c are real numbers, and tria...

If a, b and c are real numbers, and `triangle = |[b+c,c+a,a+b],[c+a,a+b,b+c],[a+b,b+c,c+a]| = 0` Show that either a+b+c = 0 or a=b=c

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    PSEB|Exercise Exercise|101 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    PSEB|Exercise Exercise|151 Videos
  • DIFFERENTIAL EQUATIONS

    PSEB|Exercise Exercise|116 Videos

Similar Questions

Explore conceptually related problems

Let a ,b and c be real numbers such that a+2b+c=4 . Find the maximum value of (a b+b c+c a)dot

Show that: a (b-c)+b(c-a)+c(a-b)=0 .

If a, b, c are positive and unequal, show that value of the determinant triangle = |[a,b,c],[b,c,a],[c,a,b]| is negative.

Prove that: |[a+b, b+c, c+a],[b+c,c+a,a+b],[c+a,a+b,b+c]|=2|[a,b,c],[b,c,a],[c,a,b]|

If the lines (a-b-c) x + 2ay + 2a = 0 , 2bx + ( b- c - a) y + 2b = 0 and (2c+1) x + 2cy + c - a - b = 0 are concurrent , then prove that either a+b+ c = 0 or (a+b+c)^(2) + 2a = 0

If a,b,c are real numbers such that 3(a^(2)+b^(2)+c^(2)+1)=2(a+b+c+ab+bc+ca) , than a,b,c are in

If a, b and c are three coplanar vectors. If a is not parallel to b, show that c=(|[c*a, a*b], [c*b, b*b]|a+|[a*a, c*a], [a*b, c*b]|b)/(|[a*a, a*b], [a*b, b*b]|) .

If a,b and c are any three vectors in space, then show that (c+b)xx(c+a)*(c+b+a)= [a b c]

If a,b,c are comples number and z= |{:(,0,-b,-c),(,bar(b),0,-a),(,bar(c),bar(a),0):}| then show tha z is purely imaginary

If a^2 (b+c),b^2(c+a) , c^2(a+b) are in A.P., show that : either a, b, c are in A.P. or ab + bc + ca =0.

PSEB-DETERMINANTS-Exercise
  1. Prove that the determinant |[x,sintheta,costheta],[-sintheta,-x,1],[co...

    Text Solution

    |

  2. Without expanding the determinant, prove that |[a,a^2,bc],[b,b^2,ca],[...

    Text Solution

    |

  3. Evaluate |[cosalphacosbeta,cosalphasinbeta,-sinalpha],[-sinbeta,cosbet...

    Text Solution

    |

  4. If a, b and c are real numbers, and triangle = |[b+c,c+a,a+b],[c+a,a+b...

    Text Solution

    |

  5. Solve the equation |[x+a,x,x],[x,x+a,x],[x,x,x+a]| = 0 a ne 0

    Text Solution

    |

  6. Prove that: |[a^2,bc,ac+c^2],[a^2+ab,b^2,ac],[ab,b^2+bc,c^2]|=4a^2b^2c...

    Text Solution

    |

  7. If A^-1 = [[3,-1,1],[-15,6,-5],[5,-2,2]] and B = [[1,2,-2],[-1,3,0],[0...

    Text Solution

    |

  8. Let A = [[1,-2,1],[-2,3,1],[1,1,5]] Verify that [adj A]^-1 = adj (A^-1...

    Text Solution

    |

  9. Let A = [[1,-2,1],[-2,3,1],[1,1,5]] Verify that [adj A]^-1 = adj (A^-1...

    Text Solution

    |

  10. Evaluate |[x,y,x+y],[y,x+y,x],[x+y,x,y]|

    Text Solution

    |

  11. Evaluate |[1,x,y],[1,x+y,y],[1,x,x+y]|

    Text Solution

    |

  12. Using properties of determinants, prove that: |[alpha,alpha^2,beta+gam...

    Text Solution

    |

  13. Using properties of determinants, prove that: |[x,x^2,1+px^3],[y,y^2,1...

    Text Solution

    |

  14. Using properties of determinants, prove that: |[3a,-a+b,-a+c],[-b+a,3b...

    Text Solution

    |

  15. Prove that: |[1,1+p,1+p+q],[2,3+2p,4+3p+2q],[3,6+3p,10+6p+3q]|=1

    Text Solution

    |

  16. Using properties of determinants, prove that: |[sinalpha,cosalpha,cos(...

    Text Solution

    |

  17. Solve the system of equations: 2/x+3/y+10/z = 4, 4/x-6/y+5/z = 1, 6/x+...

    Text Solution

    |

  18. If a, b, c, are in A.P, then the determinant |[x+2,x+3,x+2a],[x+3,x+4,...

    Text Solution

    |

  19. If x. y, z are non- real number", then the inverse of matrix A = [[x,0...

    Text Solution

    |

  20. Let A = [[1,sintheta,1],[-sintheta,1,sintheta],[-1,-sintheta,1]], wher...

    Text Solution

    |