Home
Class 12
MATHS
Prove that: |[a^2,bc,ac+c^2],[a^2+ab,b^2...

Prove that: `|[a^2,bc,ac+c^2],[a^2+ab,b^2,ac],[ab,b^2+bc,c^2]|=4a^2b^2c^2`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    PSEB|Exercise Exercise|101 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    PSEB|Exercise Exercise|151 Videos
  • DIFFERENTIAL EQUATIONS

    PSEB|Exercise Exercise|116 Videos

Similar Questions

Explore conceptually related problems

Prove that: |[a^2+1,ab,ac],[ab,b^2+1,bc],[ac,bc,c^2+1]|=|[a^2+1,b^2,c^2],[a^2,b^2+1,c^2],[a^2,b^2,c^2+1]|=1+a^2+b^2+c^2

Prove that: |[-a^2, ab,ac],[ba,-b^2,bc],[ca,cb,-c^2]|=4a^2b^2c^2

Using the properties of determinant, show that : |[a^2+1,ab,ac],[ab,b^2+1,bc],[ac,bc,c^2+1]| = 1+a^2+b^2+c^2

|[x^2+a^2,ab,ac] , [ab,x^2+b^2,bc] , [ac,bc,x^2+c^2]|=

Prove that |[1,a,a^2-bc],[1,b,b^2-ca],[1,c,c^2-ab]|= 0

Without expanding the determinant, prove that |[a,a^2,bc],[b,b^2,ca],[c,c^2,ab]| = |[1,a^2,a^3],[1,b^2,b^3],[1,c^2,c^3]|

Using the properties of determinants show that : |[[-bc,b^2+bc,c^2+bc],[a^2+ac,-ac,c^2+ac],[a^2+ab,b^2+ab,-ab]]|=(ab+bc+ca)^3

Without expanding, prove the following |(0,ab^2,ac^2),(a^2b,0,bc^2),(a^2b,b^2c,0)|=2a^3b^3c^3

PSEB-DETERMINANTS-Exercise
  1. Prove that the determinant |[x,sintheta,costheta],[-sintheta,-x,1],[co...

    Text Solution

    |

  2. Without expanding the determinant, prove that |[a,a^2,bc],[b,b^2,ca],[...

    Text Solution

    |

  3. Evaluate |[cosalphacosbeta,cosalphasinbeta,-sinalpha],[-sinbeta,cosbet...

    Text Solution

    |

  4. If a, b and c are real numbers, and triangle = |[b+c,c+a,a+b],[c+a,a+b...

    Text Solution

    |

  5. Solve the equation |[x+a,x,x],[x,x+a,x],[x,x,x+a]| = 0 a ne 0

    Text Solution

    |

  6. Prove that: |[a^2,bc,ac+c^2],[a^2+ab,b^2,ac],[ab,b^2+bc,c^2]|=4a^2b^2c...

    Text Solution

    |

  7. If A^-1 = [[3,-1,1],[-15,6,-5],[5,-2,2]] and B = [[1,2,-2],[-1,3,0],[0...

    Text Solution

    |

  8. Let A = [[1,-2,1],[-2,3,1],[1,1,5]] Verify that [adj A]^-1 = adj (A^-1...

    Text Solution

    |

  9. Let A = [[1,-2,1],[-2,3,1],[1,1,5]] Verify that [adj A]^-1 = adj (A^-1...

    Text Solution

    |

  10. Evaluate |[x,y,x+y],[y,x+y,x],[x+y,x,y]|

    Text Solution

    |

  11. Evaluate |[1,x,y],[1,x+y,y],[1,x,x+y]|

    Text Solution

    |

  12. Using properties of determinants, prove that: |[alpha,alpha^2,beta+gam...

    Text Solution

    |

  13. Using properties of determinants, prove that: |[x,x^2,1+px^3],[y,y^2,1...

    Text Solution

    |

  14. Using properties of determinants, prove that: |[3a,-a+b,-a+c],[-b+a,3b...

    Text Solution

    |

  15. Prove that: |[1,1+p,1+p+q],[2,3+2p,4+3p+2q],[3,6+3p,10+6p+3q]|=1

    Text Solution

    |

  16. Using properties of determinants, prove that: |[sinalpha,cosalpha,cos(...

    Text Solution

    |

  17. Solve the system of equations: 2/x+3/y+10/z = 4, 4/x-6/y+5/z = 1, 6/x+...

    Text Solution

    |

  18. If a, b, c, are in A.P, then the determinant |[x+2,x+3,x+2a],[x+3,x+4,...

    Text Solution

    |

  19. If x. y, z are non- real number", then the inverse of matrix A = [[x,0...

    Text Solution

    |

  20. Let A = [[1,sintheta,1],[-sintheta,1,sintheta],[-1,-sintheta,1]], wher...

    Text Solution

    |