Home
Class 12
MATHS
Prove that: |[1,1+p,1+p+q],[2,3+2p,4+3p+...

Prove that: `|[1,1+p,1+p+q],[2,3+2p,4+3p+2q],[3,6+3p,10+6p+3q]|=1`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    PSEB|Exercise Exercise|101 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    PSEB|Exercise Exercise|151 Videos
  • DIFFERENTIAL EQUATIONS

    PSEB|Exercise Exercise|116 Videos

Similar Questions

Explore conceptually related problems

Without expanding the following determinant, show that : |[[3p+q, 2p, p],[4p+3q, 3p, 3p],[5p+6q,4p,6p]]|=p^3

Prove that |[1,p,p^2-qr],[1,q,q^2-rp],[1,r,r^2-pq]|= 0

Show that: |[p-q-r,2p,2p],[2q,q-r-p,2q],[2r,2r,r-p-q]|=(p+q+r)^3

Using the properties of determinant, show that : |[1,p+q,p^2+q^2],[1,q+r,q^2+r^2],[1,r+p,r^2+p^2]| = (p-q)(q-r)(r-p)

The value of |[[1,p,q+r],[1,q,r+p],[1,r,p+q]]| is

Subtract 3pq (p – q) from 2pq (p + q).

Subtract: 4pq – 5q^2 – 3p^2 from 5p^2 + 3q^2 – pq

Write the name & symbol of the element with electronic configuration 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2 4d10 5p6

If tan alpha= p/q , where alpha=6 beta, alpha being an acute angle, prove that : 1/2 {p cosec 2 beta- qsec 2 beta} = sqrt(p^2 +q^2) .

Find the product: p xx q^2 xx p^3 xx p ^4

PSEB-DETERMINANTS-Exercise
  1. Prove that the determinant |[x,sintheta,costheta],[-sintheta,-x,1],[co...

    Text Solution

    |

  2. Without expanding the determinant, prove that |[a,a^2,bc],[b,b^2,ca],[...

    Text Solution

    |

  3. Evaluate |[cosalphacosbeta,cosalphasinbeta,-sinalpha],[-sinbeta,cosbet...

    Text Solution

    |

  4. If a, b and c are real numbers, and triangle = |[b+c,c+a,a+b],[c+a,a+b...

    Text Solution

    |

  5. Solve the equation |[x+a,x,x],[x,x+a,x],[x,x,x+a]| = 0 a ne 0

    Text Solution

    |

  6. Prove that: |[a^2,bc,ac+c^2],[a^2+ab,b^2,ac],[ab,b^2+bc,c^2]|=4a^2b^2c...

    Text Solution

    |

  7. If A^-1 = [[3,-1,1],[-15,6,-5],[5,-2,2]] and B = [[1,2,-2],[-1,3,0],[0...

    Text Solution

    |

  8. Let A = [[1,-2,1],[-2,3,1],[1,1,5]] Verify that [adj A]^-1 = adj (A^-1...

    Text Solution

    |

  9. Let A = [[1,-2,1],[-2,3,1],[1,1,5]] Verify that [adj A]^-1 = adj (A^-1...

    Text Solution

    |

  10. Evaluate |[x,y,x+y],[y,x+y,x],[x+y,x,y]|

    Text Solution

    |

  11. Evaluate |[1,x,y],[1,x+y,y],[1,x,x+y]|

    Text Solution

    |

  12. Using properties of determinants, prove that: |[alpha,alpha^2,beta+gam...

    Text Solution

    |

  13. Using properties of determinants, prove that: |[x,x^2,1+px^3],[y,y^2,1...

    Text Solution

    |

  14. Using properties of determinants, prove that: |[3a,-a+b,-a+c],[-b+a,3b...

    Text Solution

    |

  15. Prove that: |[1,1+p,1+p+q],[2,3+2p,4+3p+2q],[3,6+3p,10+6p+3q]|=1

    Text Solution

    |

  16. Using properties of determinants, prove that: |[sinalpha,cosalpha,cos(...

    Text Solution

    |

  17. Solve the system of equations: 2/x+3/y+10/z = 4, 4/x-6/y+5/z = 1, 6/x+...

    Text Solution

    |

  18. If a, b, c, are in A.P, then the determinant |[x+2,x+3,x+2a],[x+3,x+4,...

    Text Solution

    |

  19. If x. y, z are non- real number", then the inverse of matrix A = [[x,0...

    Text Solution

    |

  20. Let A = [[1,sintheta,1],[-sintheta,1,sintheta],[-1,-sintheta,1]], wher...

    Text Solution

    |