Home
Class 12
MATHS
Using properties of determinants, prove ...

Using properties of determinants, prove that: `|[sinalpha,cosalpha,cos(alpha+delta)],[sinbeta,cosbeta,cos(beta+delta)],[singamma,cosgamma,cos(gamma+delta)]| = 0`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    PSEB|Exercise Exercise|101 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    PSEB|Exercise Exercise|151 Videos
  • DIFFERENTIAL EQUATIONS

    PSEB|Exercise Exercise|116 Videos

Similar Questions

Explore conceptually related problems

Using properties of determinants, prove that: |[alpha,alpha^2,beta+gamma],[beta,beta^2,gamma+alpha],[gamma,gamma^2,alpha+beta]| = (beta-gamma)(gamma-alpha)(alpha-beta)(alpha+beta+gamma)

Using vectors, prove that cos(alpha-beta)=cosalpha cosbeta+sinalphasinbeta

Evaluate triangle = |[0,sinalpha,-cosalpha],[-sinalpha,0,sinbeta],[cosalpha,-sinbeta,0]|

Using vectors, prove that sin (alpha+beta)=sin alpha cos beta+ cos alpha sin beta .

Show that the determinant Delta(x) given by Delta(x) = |{:(sin(x+alpha),cos(x+alpha),a+xsinalpha),(sin(x+beta),cos(x+beta),b+xsinbeta),(sin(x+gamma),cos(x+gamma),c+xsingamma):}| is independent of x .

Using vectors prove that sin(alpha - beta) = sin alpha cos beta- cos alpha sin beta .

Prove that: (cosalpha+cosbeta)^2+(sinalpha+sinbeta)^2=4cos^2((alpha-beta)/2)

Prove that cosalpha+cosbeta+cosgamma+cos(alpha+beta+gamma)=4cos(alpha+beta)/(2)cos(beta+gamma)/2cos(gamma+alpha)/2

PSEB-DETERMINANTS-Exercise
  1. Prove that the determinant |[x,sintheta,costheta],[-sintheta,-x,1],[co...

    Text Solution

    |

  2. Without expanding the determinant, prove that |[a,a^2,bc],[b,b^2,ca],[...

    Text Solution

    |

  3. Evaluate |[cosalphacosbeta,cosalphasinbeta,-sinalpha],[-sinbeta,cosbet...

    Text Solution

    |

  4. If a, b and c are real numbers, and triangle = |[b+c,c+a,a+b],[c+a,a+b...

    Text Solution

    |

  5. Solve the equation |[x+a,x,x],[x,x+a,x],[x,x,x+a]| = 0 a ne 0

    Text Solution

    |

  6. Prove that: |[a^2,bc,ac+c^2],[a^2+ab,b^2,ac],[ab,b^2+bc,c^2]|=4a^2b^2c...

    Text Solution

    |

  7. If A^-1 = [[3,-1,1],[-15,6,-5],[5,-2,2]] and B = [[1,2,-2],[-1,3,0],[0...

    Text Solution

    |

  8. Let A = [[1,-2,1],[-2,3,1],[1,1,5]] Verify that [adj A]^-1 = adj (A^-1...

    Text Solution

    |

  9. Let A = [[1,-2,1],[-2,3,1],[1,1,5]] Verify that [adj A]^-1 = adj (A^-1...

    Text Solution

    |

  10. Evaluate |[x,y,x+y],[y,x+y,x],[x+y,x,y]|

    Text Solution

    |

  11. Evaluate |[1,x,y],[1,x+y,y],[1,x,x+y]|

    Text Solution

    |

  12. Using properties of determinants, prove that: |[alpha,alpha^2,beta+gam...

    Text Solution

    |

  13. Using properties of determinants, prove that: |[x,x^2,1+px^3],[y,y^2,1...

    Text Solution

    |

  14. Using properties of determinants, prove that: |[3a,-a+b,-a+c],[-b+a,3b...

    Text Solution

    |

  15. Prove that: |[1,1+p,1+p+q],[2,3+2p,4+3p+2q],[3,6+3p,10+6p+3q]|=1

    Text Solution

    |

  16. Using properties of determinants, prove that: |[sinalpha,cosalpha,cos(...

    Text Solution

    |

  17. Solve the system of equations: 2/x+3/y+10/z = 4, 4/x-6/y+5/z = 1, 6/x+...

    Text Solution

    |

  18. If a, b, c, are in A.P, then the determinant |[x+2,x+3,x+2a],[x+3,x+4,...

    Text Solution

    |

  19. If x. y, z are non- real number", then the inverse of matrix A = [[x,0...

    Text Solution

    |

  20. Let A = [[1,sintheta,1],[-sintheta,1,sintheta],[-1,-sintheta,1]], wher...

    Text Solution

    |