Home
Class 11
MATHS
If A=[(1,-3), (2,k)] and A^(2) - 4A + 10...

If `A=[(1,-3), (2,k)]` and `A^(2) - 4A + 10I = A`, then k is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let S_(k) = (1+2+3+...+k)/(k) . If S_(1)^(2) + s_(2)^(2) +...+S_(10)^(2) = (5)/(12)A , then A is equal to

If A=[{:(4i-6,10i),(14i,6+4i):}] and K=(1)/(2i), where i= sqrt(-1) . Then kA is equal to :

If A=[[3k,0],[k,k]] and A^(-1)=[[1,0],[-1,3]] , then the value of k is equal to

If A = [ (-3 , 2) , (1, -1)] and I = [(1,0) , (0, 1)] , find the scalar k so that A^2 +I = kA .

If Delta_k=|(1,n,n), (2k, n^2+n+1, n^2+n), (2k-1, n^2, n^2+n+1)| and sum_(k=1)^n Delta_k = 56, then n is equal to (i)4 (ii)6 (iii)8 (iv)none

Let A and B are square matrices of order 3. If |A|=4, |B|=6, B=A-2I and |adj(I-2A^(-1))|=k , then the value of k is equal to

If sum_(r=1)^(10)r(r-1)10C_(r)=k.2^(9), then k is equal to- -1

If A=[(3,-2),(4,-2)] and I=[(1,0),(0,1)] , find k so that A^(2)=kA-2I .