Home
Class 12
MATHS
The interval of x for which cos^(-1)x le...

The interval of x for which `cos^(-1)x le sin^(-1)x` is :

A

`(-oo,1) `

B

`[ -1, (1)/(sqrt(2)))`

C

`[(1)/(sqrt(2)),1]`

D

`[-1,1]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \cos^{-1} x \leq \sin^{-1} x \), we will follow these steps: ### Step 1: Rewrite the Inequality We start with the given inequality: \[ \cos^{-1} x \leq \sin^{-1} x \] Using the identity \( \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \), we can rewrite the inequality: \[ \cos^{-1} x \leq \frac{\pi}{2} - \cos^{-1} x \] ### Step 2: Rearrange the Inequality Next, we rearrange the inequality: \[ \cos^{-1} x + \cos^{-1} x \leq \frac{\pi}{2} \] This simplifies to: \[ 2 \cos^{-1} x \leq \frac{\pi}{2} \] ### Step 3: Divide by 2 Now, we divide both sides by 2: \[ \cos^{-1} x \leq \frac{\pi}{4} \] ### Step 4: Apply the Cosine Function To find the corresponding values of \( x \), we apply the cosine function to both sides. Remember that the cosine function is decreasing in the interval \([0, \pi]\): \[ x \geq \cos\left(\frac{\pi}{4}\right) \] Since \( \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \), we have: \[ x \geq \frac{1}{\sqrt{2}} \] ### Step 5: Consider the Domain of \( \cos^{-1} x \) The domain of \( \cos^{-1} x \) is \( x \in [-1, 1] \). Therefore, we need to combine this with our previous result: \[ \frac{1}{\sqrt{2}} \leq x \leq 1 \] ### Final Interval Thus, the interval of \( x \) for which \( \cos^{-1} x \leq \sin^{-1} x \) is: \[ \left[\frac{1}{\sqrt{2}}, 1\right] \]

To solve the inequality \( \cos^{-1} x \leq \sin^{-1} x \), we will follow these steps: ### Step 1: Rewrite the Inequality We start with the given inequality: \[ \cos^{-1} x \leq \sin^{-1} x \] Using the identity \( \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \), we can rewrite the inequality: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The interval in which cos ^(-1)x>sin^(-1)x is

The interval for which sin^(-1)sqrt(x)+cos^(-1)sqrt(x)=(pi)/(2) holds

The set of values of x for which sinx cos^(3)x gt cos x sin^(3)x,0le x le pi is

solve sin^(-1) x le cos^(-1) x

Write the interval for which the function f(x) = cos x, 0 le x le 2pi is decreasing

The value of cos(sin^(-1)x + cos^(-1)x) , where |x| le 1 , is