Home
Class 12
CHEMISTRY
Find the number of electrons having (n x...

Find the number of electrons having `(n xx l + m) = 3` for Kr atom (Atomic number = 36) 

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of electrons in a Krypton (Kr) atom that satisfy the condition \( n \cdot l + m = 3 \), we will follow these steps: ### Step 1: Understand the Quantum Numbers The quantum numbers for an electron in an atom are: - Principal quantum number (\( n \)): Indicates the energy level. - Azimuthal quantum number (\( l \)): Indicates the shape of the orbital. - Magnetic quantum number (\( m \)): Indicates the orientation of the orbital. ### Step 2: Determine the Electron Configuration of Krypton Krypton has an atomic number of 36, which means it has 36 electrons. The electron configuration of Krypton is: \[ 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 \] ### Step 3: Identify the Values of \( n \), \( l \), and \( m \) We need to find combinations of \( n \), \( l \), and \( m \) such that: \[ n \cdot l + m = 3 \] ### Step 4: Calculate Possible Combinations Let’s evaluate possible values of \( n \), \( l \), and \( m \): 1. **For \( n = 1 \)**: - \( l = 0 \) (only \( s \) orbital) - \( m = 0 \) - Calculation: \( 1 \cdot 0 + 0 = 0 \) (not valid) 2. **For \( n = 2 \)**: - \( l = 0 \) (s orbital) - \( m = 0 \) - Calculation: \( 2 \cdot 0 + 0 = 0 \) (not valid) - \( l = 1 \) (p orbital) - Possible values for \( m \): -1, 0, +1 - Calculation for \( m = 1 \): \( 2 \cdot 1 + 1 = 3 \) (valid) - Calculation for \( m = 0 \): \( 2 \cdot 1 + 0 = 2 \) (not valid) - Calculation for \( m = -1 \): \( 2 \cdot 1 - 1 = 1 \) (not valid) 3. **For \( n = 3 \)**: - \( l = 0 \) (s orbital) - \( m = 0 \) - Calculation: \( 3 \cdot 0 + 0 = 0 \) (not valid) - \( l = 1 \) (p orbital) - Possible values for \( m \): -1, 0, +1 - Calculation for \( m = 1 \): \( 3 \cdot 1 + 1 = 4 \) (not valid) - Calculation for \( m = 0 \): \( 3 \cdot 1 + 0 = 3 \) (valid) - Calculation for \( m = -1 \): \( 3 \cdot 1 - 1 = 2 \) (not valid) - \( l = 2 \) (d orbital) - Possible values for \( m \): -2, -1, 0, +1, +2 - Calculation for \( m = 0 \): \( 3 \cdot 2 + 0 = 6 \) (not valid) - Calculation for \( m = 1 \): \( 3 \cdot 2 + 1 = 7 \) (not valid) - Calculation for \( m = -1 \): \( 3 \cdot 2 - 1 = 5 \) (not valid) - Calculation for \( m = 2 \): \( 3 \cdot 2 + 2 = 8 \) (not valid) - Calculation for \( m = -2 \): \( 3 \cdot 2 - 2 = 4 \) (not valid) 4. **For \( n = 4 \)**: - \( l = 0 \) (s orbital) - \( m = 0 \) - Calculation: \( 4 \cdot 0 + 0 = 0 \) (not valid) - \( l = 1 \) (p orbital) - Possible values for \( m \): -1, 0, +1 - Calculation for \( m = 1 \): \( 4 \cdot 1 + 1 = 5 \) (not valid) - Calculation for \( m = 0 \): \( 4 \cdot 1 + 0 = 4 \) (not valid) - Calculation for \( m = -1 \): \( 4 \cdot 1 - 1 = 3 \) (valid) - \( l = 2 \) (d orbital) - Possible values for \( m \): -2, -1, 0, +1, +2 - Calculation for \( m = 0 \): \( 4 \cdot 2 + 0 = 8 \) (not valid) - Calculation for \( m = 1 \): \( 4 \cdot 2 + 1 = 9 \) (not valid) - Calculation for \( m = -1 \): \( 4 \cdot 2 - 1 = 7 \) (not valid) - Calculation for \( m = 2 \): \( 4 \cdot 2 + 2 = 10 \) (not valid) - Calculation for \( m = -2 \): \( 4 \cdot 2 - 2 = 6 \) (not valid) ### Step 5: Count the Valid Electrons From the calculations, we found valid combinations: - \( (n=2, l=1, m=1) \) - \( (n=3, l=1, m=0) \) - \( (n=4, l=1, m=-1) \) Each of these combinations corresponds to one electron. Therefore, the total number of electrons having \( n \cdot l + m = 3 \) is **3**. ### Final Answer The number of electrons having \( n \cdot l + m = 3 \) for the Kr atom is **3**. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of electrons in Na, having n+l =3

" The number of electrons in "Mg" ,having n+l =3?

The number of electrons having l = 0 chlorine atom (Z = 17) is

Number of electrons having m_(1)=0 for sodium atom is

Total number of electrons having n + l = 3 in Cr(24) atom in its ground state is.

Total number of electrons having n + l = 4 in V(23) atom in its ground state is