Home
Class 12
MATHS
If e ^(x)+e^(f(x))=e, then for f (x) dom...

If `e ^(x)+e^(f(x))=e,` then for `f (x)` domain is:

Promotional Banner

Similar Questions

Explore conceptually related problems

If e^(x)+e^(f(x))=e then domain of f(x) is

If e^(x)+e^(f(x))=e , then the domain of the function f is

If f(x)=(e^(x)+e^(-x))/(2) then inverse of f(x) is

If e^(x)+e^(f(x))=e; then find the range of the function f(x)

If e^(x)+e^(f(x))=e then find the range of the function f(x)

If f(x) is continuous such that abs(f(x)) le 1, forall x in R " and " g(x)=(e^(f(x))-e^(-abs(f(x))))/(e^(f(x))+e^(-abs(f(x)))), then range of g(x) is

If domain of f(x) be (-1,2), then (1) domain of f(sin x) will be (-oo,oo)(2) domain of f(ln x) will be ((1)/(e),e^(2))(3) domain of f(2x-3) will be (1,5/2)(4) domain of f([x]) will be [0,2), where [x]<=x

If (d(f(x)))/(dx) = e^(-x) f(x) + e^(x) f(-x) , then f(x) is, (given f(0) = 0)