Home
Class 11
MATHS
" The range of the function "f(x)=sin(si...

" The range of the function "f(x)=sin(sin^(-1)[x^(2)-1])" is (where "[" .] represents greatest integer function) "

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=(1)/(sqrt([x]^(2)-[x]-20)) is (where, [.] represents the greatest integer function)

Find the domain of the function f(x)=(1)/([x]^(2)-7[x]-8) , where [.] represents the greatest integer function.

The range of the function f(x)=(sin(pi[x^(2)+1]))/(x^(4)+1), where [.] denotes the greatest integer function,is

The range of the function f(x)=(sin(pi|x+1|))/(x^(4)+1) (where [.] is the greatest integer function) is

The range of the function f(x)=(sin(pi[x]))/(x^(2)+1) (Where [ ] denotes greatest integer function) is (A) {0} (B) (-oo,oo) (C) (0,1) (D) R-{0}

The domain of the function f(x)=(sin^(-1)x)/([x]) is (where [ ] is greatest integer function)

The domain of the function f(x)=sin^(-1)[2x^(2)-3], where [.] is greatest integer function,is

If [2cos x]+[sin x]=-3, then the range of the function,f(x)=sin x+sqrt(3)cos x in [0,2 pi] (where [1 denotes greatest integer function)

The range of the function f(x)=(tan(pi[x+1]))/(x^(4)+1) (where, [.] is the greatest integer function) is