Home
Class 11
MATHS
If F(1) and F(2) are the feet of the per...

If F_(1) and F_(2) are the feet of the perpendiculars from foci S_(1) and S_(2) of the ellipse `(x^(2 /(25 +y^(2 /(16 =1` on the tangent at any point P of the ellipse,then the minimum value of `S_(1 F_(1 +S_(2 F_(2` is 1) 2, 2) 3, 3) 6, 4) 8

Promotional Banner

Similar Questions

Explore conceptually related problems

If M_(1) and M_(2) are the feet of perpendiculars from foci F_(1) and F_(2) of the ellipse (x^(2))/(64)+(y^(2))/(25)=1 on the tangent at any point P of the ellipse then

If F_(1) and F_(2) are the feet of the perpendiculars from the foci S_(1)andS_(2) of the ellipse (x^(2))/(25)+(y^(2))/(16)=1 on the tangent at any point P on the ellipse,then prove that S_(1)F_(1)+S_(2)F_(2)>=8

If F_(1) and F_(2) are the feet of the perpendiculars from foci s_(1) and s_(2) of an ellipse 3x^(2)+5y^(2)=15 on the tangent at any point P on the ellipse then (s_(1)F_(1))(S_(2)F_(2)) =

The product of the perpendiculars from the two foci of the ellipse (x^(2))/(9)+(y^(2))/(25)=1 on the tangent at any point on the ellipse

Let d_(1) and d_(2) be the lengths of perpendiculars drawn from foci S' and S of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 to the tangent at any point P to the ellipse. Then S'P : SP is equal to

If p is the length of the perpendicular from the focus S of the ellipse x^(2)/a^(2)+y^(2)/b^(2) = 1 to a tangent at a point P on the ellipse, then (2a)/(SP)-1=

The locus of the foot of the perpendicular from the foci an any tangent to the ellipse x^(2)/a^(2) + y^(2)/b^(2) = 1 , is

The product of the perpendiculars from the foci of the ellipse x^2/144+y^2/100=1 on any tangent is: