Home
Class 12
MATHS
If f:[1, oo) rarr [1, oo) is defined as ...

If `f:[1, oo) rarr [1, oo)` is defined as `f(x) = 3^(x(x-2))` then `f^(-1)(x)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If f : [1, oo) rarr [2, oo) is given by f(x) = x + (1)/(x) then f^(-1) (x) equals:

If the function, f:[1,oo]to [1,oo] is defined by f(x)=3^(x(x-1)) , then f^(-1)(x) is

If f:[1, oo) rarr [2, oo) is defined by f(x)=x+1/x , find f^(-1)(x)

If the function f:[1,oo)to[1,oo) is defined by f(x)=2^(x(x-1)) then f^(-1) is

If the function f:[2,oo)rarr[-1,oo) is defined by f(x)=x^(2)-4x+3 then f^(-1)(x)=

Let f:[4,oo)to[4,oo) be defined by f(x)=5^(x^((x-4))) .Then f^(-1)(x) is

Let f:(-oo,-1)rarr R-{1} is defined as f(x)=(x)/(x+1) Find f^(-1)(x)

If f : [0, oo) rarr [0, oo) and f(x) = (x^(2))/(1+x^(4)) , then f is