Home
Class 12
MATHS
The range of the function f(x) = sin(sin...

The range of the function `f(x) = sin(sin^-1[x^2-1]) is (where [*]` represents greatest integer function)

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the domain of the function f(x)=(1)/([x]^(2)-7[x]-8) , where [.] represents the greatest integer function.

The domain of the function f(x)=(1)/(sqrt([x]^(2)-[x]-20)) is (where, [.] represents the greatest integer function)

The range of the function f(x)=(sin(pi[x]))/(x^(2)+1) (Where [ ] denotes greatest integer function) is (A) {0} (B) (-oo,oo) (C) (0,1) (D) R-{0}

The range of the function f(x)=(sin(pi|x+1|))/(x^(4)+1) (where [.] is the greatest integer function) is

The domain of the function f(x)=(sin^(-1)x)/([x]) is (where [ ] is greatest integer function)

The range of the function f(x)=(sin(pi[x^(2)+1]))/(x^(4)+1), where [.] denotes the greatest integer function,is

If [2cos x]+[sin x]=-3, then the range of the function,f(x)=sin x+sqrt(3)cos x in [0,2 pi] (where [1 denotes greatest integer function)

The number of integers in the range of function f(x)=[sin x]+[cos x]+[sin x+cos x] is (where [.]= denotes greatest integer function)

The range of the function f(x)=(tan(pi[x+1]))/(x^(4)+1) (where, [.] is the greatest integer function) is