Home
Class 11
MATHS
If tan^-1x+ tan^-1 y+ tan ^-1 z= 0then t...

If `tan^-1x+ tan^-1 y+ tan ^-1 z= 0`then the value of `1/(x y)+1/(y z)+1/(z x)` is `(x,y,z != 0)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)x+tan^(-1)y+tan^(-1)z=0 then the value of (1)/(xy)+(1)/(yz)+(1)/(zx)is(x,y,z!=0)

If tan^(-1) x + tan^(-1) y - tan^(-1) z = 0 , then prove that : x+ y + xyz = z .

If tan ^ (- 1) x + tan ^ (- 1) y + tan ^ (- 1) z = pi prove that x + y + z = xyz

If tan^(-1) x + tan^(-1)y + tan^(-1)z= pi then x + y + z is equal to

If tan^(-1)x+ tan^(-1)y + tan^(-1)z = pi , prove that x + y + z = xyz .

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi , then 1/(xy)+1/(yz)+1/(zx)=

tan^(-1) x + tan^(-1) y + tan^(-1) z = (pi)/2 show that : xy + yz + zx = 1 .

If tan ^(-1) x + tan ^(-1) y + tan ^(-1) z = (pi)/(2), then xy + yz+zx is equal to

If x^(1//3) + y^(1//3) + z^(1//3) = 0 , then the value of (x + y + z)^3 is :

If tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(4) and x+y+z=1 then the value of (x^(5)+y^(5)+z^(5)) is equal to (1) Zero (2)-1 (3) 1 (4)2