Home
Class 11
MATHS
Find the value of tan^(-1)(x/y)-tan^(-1)...

Find the value of `tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Formula for tan^(-1)(x)+-tan^(-1)(y)

Tan^(-1)((x)/(y))-Tan^(-1)((x-y)/(x+y)) is equal to

If x<0,\ y<0 such that x y=1 , then write the value of tan^(-1)x+tan^(-1)y .

Prove that tan^(-1)((x)/(y))-tan^(-1)((x-y)/(x+y)) is (pi)/(4) and Not(-3 pi)/(4)

If x + y + z = xyz and x, y, z gt 0 , then find the value of tan^(-1) x + tan^(-1) y + tan^(-1) z

If xgt0x,ygt0 and x gty then tan^(-1){(x)/(y)}+tan^(-1){(x+y)/(x-y)} is equal to

The result tan^(-1)x-tan^(-1)y = tan^(-1)((x-y)/(1+xy)) is true when the value of xy is "………."

tan^(-1)x+tan^(-1)y=pi+tan^(-1)((x+y)/(1-xy))