Home
Class 11
MATHS
lim[n->oo](1+2+3+.....+n)/n^2...

`lim_[n->oo](1+2+3+.....+n)/n^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_ (n rarr oo) (1 + 2 + 3 + ...... + n) / (n ^ (2))

lim_ (n rarr oo) (1 + 2 + 3 + ...... + n) / (3n ^ (2)) =?

lim_(n rarr oo)((1+2+3+...+n)/(n+2)-(n)/(2))

lim_ (n rarr oo) (1 + 2 + 3 + ... + n) / (n ^ (2) +10)

S1: lim_(n->oo) (2^n + (-2)^n)/2^n does not exist S2: lim_(n->oo) (3^n + (-3)^n)/4^n does not exist

The value of lim_(x to oo) (1 + 2 + 3 … + n)/(n^(2)) is

lim_ (n rarr oo) (1 + 2 + 3 * -n) / (n ^ (2))

Write the value of (lim)_(n rarr oo)(1+2+3++n)/(n^(2))

The value of (lim)_(n rarr oo){(1+2+3++n)/(n+2)-(n)/(2)} is a.1b*-1c*1/2d* -1/2

lim_ (n rarr oo) (1.2 + 2.3 + 3.4 + .... + n (n + 1)) / (n ^ (3))