Home
Class 12
MATHS
If the roots of the equation (a^2+b^2)x^...

If the roots of the equation `(a^2+b^2)x^2 +2(bc + ad)x+(c^2 +d^2)=0` are real then `a^2 ,bd,c^2` are in

Promotional Banner

Similar Questions

Explore conceptually related problems

The roots of the equation (a^(2)+b^(2))x^(2)-2(bc+ad)x+(c^(2)+d^(2))=0 are equal if

If the roots of the equation (a^(2)+b^(2))x^(2)-2(ac+bd)x+(c^(2)+d^(2))=0 are real where a,b,c,d in R ,then they are Rational Irrational Equal unequal

If the roots of the equation (a^(2) + b^(2))x^(2) - 2(ac + bd) x + (c^(2) + d^(2)) = 0 are equal prove that (a)/(b) = (c )/(d)

If a,b,c,d, x are real and the roots of equation (a^2+b^2+c^2)x^2-2(ab+bc+cd)x+(b^2+c^2+d^2)=0 are real and equal then a,b,c,d are in (A) A.P (B) G.P. (C) H.P. (D) none of these

If the roots of the equation (a^2+b^2)x^2-2b(a+c)x+(b^2+c^2)=0 are equal, then 2b=a+c (b) b^2=a c (c) b=(2a c)/(a+c) (d) b=a c

Show that if the roots of the equation (a^(2)+b^(2))x^(2)+2x(ac+bd)+c^(2)+d^(2)=0 are real,they will be equal

If the roots of the equation (a^(2)+b^(2))x^(2)-2(ac+bd)x+(c^(2)+d^(2))=0 are equal,prove that (a)/(b)=(c)/(d)

if the roots of (a^2+b^2)x^2-2b(a+c)x+(b^2+c^2)=0 are real and equal then a,b,c are in