Home
Class 12
MATHS
Let g(x)=1+x-[x]a n df(x)={-1, x<0 0, x=...

Let `g(x)=1+x-[x]a n df(x)={-1, x<0 0, x=0f, x >0` . Then for all `x ,f(g(x))` is equal to (where [.] represents the greatest integer function). `x` (b) `1` (c) `f(x)` (d) `g(x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let g(x)=1+x-[x] and f(x)={-1,x 0. Then for all x,f(g(x)) is equal to (where [.] represents the greatest integer function). (a) x (b) 1 (c) f(x) (d) g(x)

Let g(x) = 1 + x – [x] and f(x)={:{(-1,if,xlt0),(0,if, x=0),(1,if,x gt0):} then Aax, fog(x) equals (where [ * ] represents greatest integer function).

Let g(x)=1+x-[x] and f(x)=-1 if x 0, then f|g(x)]=1x>0

Let f(x)=|x| and g(x)=[x] , (where [.] denotes the greatest integer function) Then, (fog)'(-1) is

Let f(x)=|(x+(1)/(2))[x]| when -2<=x<=2| .where [.] represents greatest integer function.Then