Home
Class 11
MATHS
(x^4+1)/(x(x^2+1)^2)dx=Aln|x|+B/(1+x^2)+...

`(x^4+1)/(x(x^2+1)^2)dx=Aln|x|+B/(1+x^2)+C ,`

Promotional Banner

Similar Questions

Explore conceptually related problems

If int (x^4 + 1)/(x(x^2+1)^2)\ dx = A ln |x| +B/(1+x^2)+C, then A+B equals to :

(x^(4)+1)/(x(x^(2)+1)^(2))dx=A ln|x|+(B)/(1+x^(2))+C

If int(x^(4)+1)/(x(x^(2)+1)^(2))dx=A ln|x|+(B)/(1+x^(2))+C then

int(x^(4)+1)/(x(x^(2)+1)^(2))dx

int(2x+1)(x^(2)+x+1)^(4)dx=

int(x^(2)+1)/(x^(4)-x^(2)+1)dx=

int(x^(2)-1)/(x^(4)+x^(2)+1)dx=

int(4x+1)/(2x^(2)+x+1)dx

If int((2x+1)dx)/(x^(4)+2x^(3)+x^(2)-1)=Aln|(x^(2)+x+1)/(x^(2)+x-1)|+C , then

If int(2x^2+3)/((x^2-1)(x^2+4))dx=alog((x-1)/(x+1))+btan^(- 1) (x/2)+C then the values of a and b are respectively (A) 1/2,1/2 (B) 1,1 (C) 1/2,1 (D) None