Home
Class 12
PHYSICS
The position vector of the particle is r...

The position vector of the particle is `r(t)= a cos omega t hat(i) + a sin omega t hat(j)`, where a and `omega` are real constants of suitable dimensions. The acceleration is

A

perpendlcular to the velocity

B

parallel to the velocity

C

direction away from the origin

D

perpendicular to the position vector

Text Solution

Verified by Experts

The correct Answer is:
A

Given that, `r(t)= a cos omega t hat(i) + a sin omega t hat(j)`
`because v= (dr(t))/(dt)= - a omega sin omega t hat(i) + a omega cos omega t hat(j)`
`a= (dv)/(dt)= - a omega^(2) cos omega t hat(i)-a omega^(2) sin omega t hat(j)`
`because a.v= (-a omega sin omega t hat(i)+ a omega cos omega t hat(j)) (-a omega^(2) cos omega t hat(i)- a omega^(2) sin omega t hat(j))`
`a.v = a^(2) omega^(3) sin omega t cos omega t- a^(2) omega^(3) sin omega t cos omega t`
`rArr a.v= 0 [ because a.v |a||v| cos theta]`
Above result implies that acceleration is perpendicular to velocity
Promotional Banner