If "sin"^(-1)x + "sin"^(-1)y +"sin"^(-1)z = pi "prove that" x^4+y^4+z^4 +4x^2y^2z^2=2(x^2y^2+y^2z^2+z^2x^2)
If the straight line x cos alpha + y sin alpha = p touches the curve (x^(2))/(a^(2)) + (y^(2))/(b^(2)) = 1 , then prove that a^(2) cos^(2) alpha + b^(2) sin^(2) alpha = p^(2) .
If sin^(-1)((x)/(a)) +sin^(-1)((y)/(b)) = sin^(-1)((c^(2))/(ab)) , then prove that b^(2)x^(2)+2xy sqrt(a^(2)b^(2)-c^(4)) +a^(2)y^(2)=c^(4)
If y =(sin^(-1) x)^2 , prove that (1-x^2)y_2 - xy_1 - 2 = 0
ARIHANT PRAKASHAN-INVERSE TRIGONOMETRIC FUNCTIONS -Chapter Test (6 MARKS Questions)