Home
Class 12
MATHS
Use the elementary row operation R(1) to...

Use the elementary row operation `R_(1) to R_(1)-3R_(2)` in the matrix equation `[{:(4,2),(3,3):}]=[{:(1,2),(0,3):}][{:(2,0),(1,1):}]`

Text Solution

Verified by Experts

The correct Answer is:
`[{:(-5,-7),(3,3):}]=[{:(1,-7),(0,3):}][{:(2,0),(1,1):}]`
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    ARIHANT PRAKASHAN|Exercise Chapter Test ( 1 Mark Questions)|5 Videos
  • MATRICES

    ARIHANT PRAKASHAN|Exercise Chapter Test ( 4 Mark Questions)|7 Videos
  • MATRICES

    ARIHANT PRAKASHAN|Exercise Topic - 02 ( Practice Questions (6 Mark Questions ) )|5 Videos
  • LINEAR PROGRAMMING

    ARIHANT PRAKASHAN|Exercise Chapter Test (6 MARKS Questions) |10 Videos
  • PROBABILITY

    ARIHANT PRAKASHAN|Exercise Chapter test (6 mark question)|8 Videos

Similar Questions

Explore conceptually related problems

Use the elementary column operations C_(2) to C_(2)-2C_(1) in the matrix equation [{:(1,-3),(2,4):}]=[{:(1,-1),(0,1):}][{:(3,1),(2,4):}]

Find the matrix A satisfying the equation [{:(2,1),(3,2):}].A.[{:(-3,2),(5,-3):}]=[{:(1,0),(0,1):}]

Solve the matrix [{:(x,-5,-1):}][{:(1,0,2),(0,2,1),(2,0,3):}][{:(x),(4),(1):}]=O .

Using elementary row transformation , find the inverse of the matrix A=[{:(3,-1),(-4,2):}] .If A^(-1)=(1)/(2)[{:(2,a),(b,3):}] , then find the values of a and b .

Using elementary transformation, find the inverse of the following matrix, if it exists. [{:(2,3,-3),(-1,-2,2),(1,1,-1):}]

Using elementary transformation , find the inverse of the following matrices . [{:(2,0,-1),(5,1,0),(0,1,3):}]