Home
Class 12
MATHS
Suppose A=[{:(2,2,-4),(-4,2,-4),(2,-1,5...

Suppose `A=[{:(2,2,-4),(-4,2,-4),(2,-1,5):}]and B=[{:(1,-1,0),(2,3,4),(0,1,2):}]` then find BA and use these to solve the system of equations
`y+2x=7`
`x-y=3`
`2x+3y+4z=17`

Text Solution

Verified by Experts

The correct Answer is:
7
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    ARIHANT PRAKASHAN|Exercise CHAPTER TEST (4 MARK QUESTIONS)|7 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT PRAKASHAN|Exercise Chapter test (6 mark question)|8 Videos
  • DIFFERENTIAL EQUATIONS

    ARIHANT PRAKASHAN|Exercise Chapter test (6 MARKS Questions)|8 Videos

Similar Questions

Explore conceptually related problems

Suppose A=[{:(2,2,-4),(-4,2,-4),(2,-1,5):}] and B=[{:(1,-1,0),(2,3,4),(0,1,2):}] Then find BA and use this to solve the syetm of equations y+2x=7 x-y=3 2x+3y+4z=17

Suppse A=[(2,2,-4),(-4,2,-4),(2,-1,5):}]and B=[(1,-1,0),(2,3,4),(0,1,2):}] Then find BA and use this to solve the system of equations y+2z=7,x-y=3 and 2x+3+4z=17

IF A=[(1,-2,0),(2,1,3),(0,-2,1):}]and B=[(7,2,-6),(-2,1,-3),(-4,2,5):}] then find AB and hence solve system of equations x-2y=10,2x+y+3z=8 and -2y+z=7

IF A=[(1,2,1),(-1,1,1),(1,-3,1):}] then find A^-1 and hence solve the system of equations x+2y+z=4, -x+y+z=0 and x-3y+z=4

IF A=[(2,-1,1),(-1,2,-1),(1,-1,2):}]and B=[(3,1,-1),(1,3,1),(-1,1,3):}] then find the product AB and use this result to solve the following system of linear equations 2x-y+z=-1,-x+2y-z=4 and x-2y+2z=-3

If A=[(3,-4,2),(2,3,5),(1,0,1):}] then find A^-1 and hence solve the following system of equations, 3x-4y+2z=-1,2x+3y+5z=7

If A=[[1,-2,1],[0,-1,1],[2,0,-3]] then find A^(-1) and hence solve the system of equations x-2y + z = 0 , -y + z = -2 and 2x-3z= 10.

Answer any one question (a) Determine the product [{:(-4,4,4),(7,1,3),(5,-3,-1):}][{:(1,-1,1),(1,-2,-2),(2,1,3):}] and use it to solve the following system of equations x-y+z=4, x-2y -2z = 9, 2x + y + 3z =1 .

Answer any one question (a) Determine the product [{:(-4,4,4),(7,1,3),(5,-3,-1):}][{:(1,-1,1),(1,-2,-2),(2,1,3):}] and use it to solve the following system of equations x-y+z=4, x-2y -2z = 9, 2x + y + 3z =1 .

Determine the product of A=[(-4,4,4),(-7,1,3),(5,-3,-1):}][(1,-1,1),(1,-2,-2),(2,1,3):}] and then use to solve the system of equations x-y+z=4, x-2y-2z=9 and 2x+y+3z=1