Home
Class 12
MATHS
Compute the magnitude of the following v...

Compute the magnitude of the following vectors
`vec(a)=hat(i)+hat(j)+hat(k),vec(b)=2hat(i)-7hat(j)-3hat(k)`
and `vec(c)=(1)/(sqrt(3))hat(i)+(1)/(sqrt(3))hat(j)-(1)/(sqrt(3))hat(k)`.

Text Solution

Verified by Experts

The correct Answer is:
`|vec(a)|=sqrt(3),|vec(b)|=sqrt(62),|vec(c)|=1`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTORS

    ARIHANT PRAKASHAN|Exercise TOPIC -2 (PRACTICE QUESTIONS) (1 MARK QUESTIONS) |34 Videos
  • VECTORS

    ARIHANT PRAKASHAN|Exercise TOPIC -2 (PRACTICE QUESTIONS) (4 MARK QUESTIONS) |24 Videos
  • VECTORS

    ARIHANT PRAKASHAN|Exercise TOPIC -1 (PRACTICE QUESTIONS) (4 MARK QUESTIONS) |12 Videos
  • THREE DIMENSIONAL GEOMETRY

    ARIHANT PRAKASHAN|Exercise CHAPTER TEST|24 Videos
  • VERY SIMILAR TEST 1

    ARIHANT PRAKASHAN|Exercise Section C |10 Videos

Similar Questions

Explore conceptually related problems

Find the angle between the vectors vec(a)=3hat(i)+2hat(j)-hat(k),vec(b)=-2hat(i)-3hat(j)+hat(k) .

Find the projection of the vector a=3hat(i)+6hat(j)+9hat(k) on vec(b)=2hat(i)+2hat(j)-hat(k)

Knowledge Check

  • If vec(a)=hat(i)+2hat(j)+hat(k),vec(b)=2hat(i)-2hat(j)+2hat(k) and vec(c)=-hat(i)+2hat(j)+hat(k) , then

    A
    `vec(a)` and `vec(b)` have the same directions
    B
    `vec(a)` and `vec(c)` have opposite directions
    C
    `vec(b)` and `vec(c )` have opposite directions
    D
    no pair of vectors have same directions
  • Similar Questions

    Explore conceptually related problems

    Find the sum of the vectors vec(a) = hat(i) - 2hat(j) + hat(k), vec(b) = -2hat(i) + 4hat(j) + 5hat(k) and vec(c) = hat(i) - 6hat(j) - 7hat(k) .

    Find angle theta between the vectors vec(a) = hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(j) + hat(k) .

    Find [vec(a)vec(b)vec(c )] , if vec(a)=hat(i)-2hat(j)+3hat(k),vec(b)=2hat(i)-3hat(j)+hat(k) and vec(c )=3hat(i)+hat(j)-2hat(k) .

    Determine k such that a vector vec(r) is at right angles to each of the vectors vec(a) = k hat(i) + hat(j) + 3hat(k), vec(b) = 2hat(i) + hat(j) - k hat(k) and vec(c) = -2hat(i) + k hat(j) + 3hat(k) .

    Show that the vectors vec(a) = hat(i) - 2hat(j) + 3hat(k), vec(b) = -2hat(i) + 3hat(j) - 4hat(k) and vec(c) = hat(i) - 3hat(j) + 5hat(k) are coplanar.

    Show that the vectors vec(a)=3hat(i)-2hat(j)+hat(k),vec(b)=hat(i)-3hat(j)+5hat(k) and vec(c)=2hat(i)+hat(j)-4hat(k) form a right angled triangle.

    Find the magnitude of vec(a) given by vec(a) = (hat(i) + 3hat(j) - 2hat(k)) xx (-hat(i) + 3hat(k)) .