Home
Class 12
MATHS
Prove that |vec(a)-vec(b)|ge|vec(a)|-|ve...

Prove that `|vec(a)-vec(b)|ge|vec(a)|-|vec(b)|`.

Promotional Banner

Topper's Solved these Questions

  • VECTORS

    ARIHANT PRAKASHAN|Exercise CHAPTER TEST (6 MARK QUESTIONS)|9 Videos
  • VECTORS

    ARIHANT PRAKASHAN|Exercise CHAPTER TEST (1 MARK QUESTIONS)|10 Videos
  • THREE DIMENSIONAL GEOMETRY

    ARIHANT PRAKASHAN|Exercise CHAPTER TEST|24 Videos
  • VERY SIMILAR TEST 1

    ARIHANT PRAKASHAN|Exercise Section C |10 Videos

Similar Questions

Explore conceptually related problems

For any two vectors vec(a) and vec(b) , we always have |vec(a).vec(b)| le |vec(a)||vec(b)| . (Cauchy Schwartz inequality)

Prove that vec(a) xx (vec(b) + vec(c)) + vec(b) xx (vec(c) + vec(a)) + vec(c) xx (vec(a) + vec(b)) = vec(0)

Prove that [vec(a)vec(b)vec(c) + vec(d)] = [vec(a)vec(b)vec(c)] + [vec(a) vec(b)vec(d)] .

Prove that [vec(p) - vec(q) vec(q) - vec(r) vec(r) - vec(p)] = 0

For any three vectors vec(a), vec(b) and vec(c) , prove that vec(a) xx (vec(b) - vec(c)) = (vec(a) xx vec(b)) - (vec(a) xx vec(c)) .