Home
Class 12
MATHS
Prove the angle between the diagonal of ...

Prove the angle between the diagonal of one of the faces of the cube and the diagonal of the cube intersecting the diagonal of the face of the cube is `cos^(-1)"sqrt(2/3)`

Text Solution

Verified by Experts

The correct Answer is:
` sqrt(((2)/(3)))`
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    ARIHANT PRAKASHAN|Exercise TOPIC -2- PRACTICE QUESTIONS |38 Videos
  • THREE DIMENSIONAL GEOMETRY

    ARIHANT PRAKASHAN|Exercise TOPIC TEST 2|12 Videos
  • THREE DIMENSIONAL GEOMETRY

    ARIHANT PRAKASHAN|Exercise CHAPTER TEST|24 Videos
  • SIMILAR TEST 3

    ARIHANT PRAKASHAN|Exercise SECTION C|14 Videos
  • VECTORS

    ARIHANT PRAKASHAN|Exercise CHAPTER TEST (6 MARK QUESTIONS)|9 Videos

Similar Questions

Explore conceptually related problems

Find the angles between the pair of lines whose slopes are , sqrt3 ,-1 .

Prove the following by vector method. Measure of the angle between two diagonals of a cube is cos^-1 (1/3)

A charge of 6muc is placed at the corner of a cube. Find the flux linked with each opposite face of the cube.

Prove that the measure of the angle between two main diagonals of a cube is cos^(-1)frac[1][3] .