Home
Class 12
MATHS
Show that |{:((b+c)^2,a^2,a^2),(b^2,(c...

Show that
`|{:((b+c)^2,a^2,a^2),(b^2,(c+a)^2,b^2),(c^2,c^2,(a+b)^2):}|=2abc(a+b+c)^3`

Text Solution

Verified by Experts

The correct Answer is:
RHS
Promotional Banner

Topper's Solved these Questions

  • VERY SIMILAR TEST 5

    ARIHANT PRAKASHAN|Exercise SECTION B |24 Videos
  • VERY SIMILAR TEST 4

    ARIHANT PRAKASHAN|Exercise Section - C |13 Videos
  • VERY SIMILAR TEST 6

    ARIHANT PRAKASHAN|Exercise SECTION C ANSWER ANY ONE QUESTIONS|11 Videos

Similar Questions

Explore conceptually related problems

Show that: abs((a,a^2,a^3),(b,b^2,b^3),(c,c^2,c^3))=abc(a-b)(b-c)(c-a)

Show that: abs((1,a,a^2),(1,b,b^2),(1,c,c^2))=(a-b)(b-c)(c-a)

Show that |{:(a,b,c),(a+2x,b+2y,c+2z),(x,y,z):}|=0

If 2s=a+b+c show that [[a^2,(s-a)^2,(s-a)^2],[(s-b)^2,b^2,(s-b)^2],[(s-c)^2,(s-c)^2,c^2]] = 2s^3(s-a)(s-b)(s-c)

Without expanding the determinants prove that |{:(a,a^2,bc),(b,b^2,ca),(c,c^2,ab):}| = |{:(1,a^2,a^3),(1,b^2,b^3),(1,c^2,c^3):}|

Show that abs((2(a+b+c),a,b),(2(a+b+c),b+c+2a,b),(2(a+b+c),a,c+a+2b))=2(a+b+c)^3

Prove that abs((a,b,c),(a^2,b^2,c^2),(bc,ca,ab))=(a-b)(b-c)(c-a)(ab+bc+ca)

Prove the following: [[(b+c)^2,a^2,bc],[(c+a)^2,b^2,ca],[(a+b)^2,c^2,ab]] = (a^2+b^2+c^2)(a+b+c)(b-c)(c-a)(a-b)