Home
Class 11
PHYSICS
The displacement function of a wave trav...

The displacement function of a wave traveling along positive x-direction is `y=(1)/(2+2x^(2))` at `t=0 and ` by `y=(1)/(2+2(x-2)^(2))` at t=2s, where y and x are in metre. The velocity of the wave is:

Promotional Banner

Similar Questions

Explore conceptually related problems

The displacement function of a wave travelling along positive x-direction is y =(1)/(2 + 3x^(2))at t=0 and by y = (1)/(2) + 3(x - 2)^(2)) at t = 2 s , where y and x are in metre. The velocity of the wave is

The displacement of a wave disturbance propagating in the positive x-direction is given by y =(1)/(1 + x^(2)) at t = 0 and y =(1)/(1 +(x - 1)^(2)) at t =2s where, x and y are in meter. The shape of the wave disturbance does not change during the propagation. what is the velocity of the wave?

The amplitude of wave disturbance propagating in the positive x-direction is given by y=(1)/((1+x)^(2)) at time t=0 and y=(1)/(1+(x-2)^(2)) at t=1s, where x and y are in metres. The shape of wave does not change during the propagation. The velocity of the wave will be ____m/s.

The amplitude of a wave disturbance propagating along positive X-axis is given by =1/(1+x^(2)) at t=0 and y=1/[1+(x-2)^(2)] at t=4 s where x and y are in metre. The shape of wave diturbance does not change with time. The velocity of the wave is

The shape of a wave propagating in the positive x or negative x-direction is given y=1/sqrt(1+x^(2)) at t=0 and y=1/sqrt(2-2x+x^(2)) at t=1s where x and y are in meters the shape the wave disturbance does not change during propagation find the velocity of the wave

The displacement y of a wave travelling in the x-direction is given by y = 10^(-4) sin (600t - 2x + (pi)/(3)) m Where x is expressed in metre and t in seconds. The speed of the wave motion in m/s is

A wave is represented by y=0.4cos(8t-(x)/(2)) where x and y are in metres and t in seconds. The frequency of the wave is

A wave travels in a medium according to the equation of displacement given by y(x, t)=0.03 sin pi (2 t-0.01 x) where y and x are in metres and t in seconds. The wavelength of the wave is