Home
Class 11
MATHS
If a(b-c)x^(2)+b(c-a)x+c(a-b) is a perfe...

If `a(b-c)x^(2)+b(c-a)x+c(a-b)` is a perfect square then `a,b,c` are in

Promotional Banner

Similar Questions

Explore conceptually related problems

52 Show that a(b-c)x^(2)+b(c-a)xy+c(a-b)y^(2) will be a perfect square if a,b,c are in H.P

Show that If a(b-c)x^(2)+b(c-a)xy+c(a-b)y^(2)=0 is a perfect square,then the quantities a,b,care in harmonic progresion

If a(b-c)x^(2)+b(c-a)xy+c(a-b)y^(2)=0 is a perfect square,then (log(a+c)+log(a-2b+c))/(log(a-c)) is equal to

If the left hand side of the equation a(b-c)x^2+b(c-a) xy+c(a-b)y^2=0 is a perfect square , the value of {(log(a+c)+log(a-2b+c)^2)/log(a-c)}^2 , (a,b,cinR^+,agtc) is

If a(b-c)x^(2)+b(c-a)x+c(a-b)=0 has equal root,then a,b,c are in

show that (3a+2b-c+d)^(2)-12a(2b-c+d) is a perfect square .

If the expression a^(2)(b^(2)-c^(2))x^(2)+b^(2)(c^(2)-a^(2))x+c^(2)(a^(2)-b^(2)) is a perfect square, then

If the expression x^(2)+2(a+b+c)+3(bc+c+ab) is a perfect square,then a=b=cba=+-b=+-c c.a=b!=c d.nome of these