Home
Class 12
MATHS
If 0 le x lt 2pi, then the number of re...

If `0 le x lt 2pi`, then the number of real values of x which satisfy the equation `cosx+cos2x+cos3x+cos4x=0`, is :

A

3

B

5

C

7

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos x + \cos 2x + \cos 3x + \cos 4x = 0 \) for \( 0 \leq x < 2\pi \), we can follow these steps: ### Step 1: Grouping the Terms We can group the terms in pairs: \[ (\cos x + \cos 3x) + (\cos 2x + \cos 4x) = 0 \] ### Step 2: Applying the Cosine Addition Formula Using the identity \( \cos a + \cos b = 2 \cos\left(\frac{a+b}{2}\right) \cos\left(\frac{a-b}{2}\right) \), we can rewrite the grouped terms: \[ \cos x + \cos 3x = 2 \cos\left(2x\right) \cos\left(x\right) \] \[ \cos 2x + \cos 4x = 2 \cos\left(3x\right) \cos\left(x\right) \] Thus, we can rewrite the equation as: \[ 2 \cos(2x) \cos(x) + 2 \cos(3x) \cos(x) = 0 \] ### Step 3: Factoring Out Common Terms Factoring out \( 2 \cos(x) \): \[ 2 \cos(x) \left( \cos(2x) + \cos(3x) \right) = 0 \] ### Step 4: Setting Each Factor to Zero This gives us two equations to solve: 1. \( \cos(x) = 0 \) 2. \( \cos(2x) + \cos(3x) = 0 \) ### Step 5: Solving \( \cos(x) = 0 \) The solutions for \( \cos(x) = 0 \) in the interval \( 0 \leq x < 2\pi \) are: \[ x = \frac{\pi}{2}, \frac{3\pi}{2} \] This gives us **2 solutions**. ### Step 6: Solving \( \cos(2x) + \cos(3x) = 0 \) Using the identity again: \[ \cos(2x) + \cos(3x) = 2 \cos\left(\frac{5x}{2}\right) \cos\left(\frac{x}{2}\right) = 0 \] This gives us two more equations: 1. \( \cos\left(\frac{5x}{2}\right) = 0 \) 2. \( \cos\left(\frac{x}{2}\right) = 0 \) ### Step 7: Solving \( \cos\left(\frac{5x}{2}\right) = 0 \) The solutions for \( \cos\left(\frac{5x}{2}\right) = 0 \) are: \[ \frac{5x}{2} = \frac{\pi}{2} + n\pi \quad (n \in \mathbb{Z}) \] This leads to: \[ x = \frac{\pi}{5} + \frac{2n\pi}{5} \] Finding values for \( n \) such that \( 0 \leq x < 2\pi \): - For \( n = 0 \): \( x = \frac{\pi}{5} \) - For \( n = 1 \): \( x = \frac{3\pi}{5} \) - For \( n = 2 \): \( x = \pi \) - For \( n = 3 \): \( x = \frac{7\pi}{5} \) - For \( n = 4 \): \( x = \frac{9\pi}{5} \) This gives us **5 solutions**. ### Step 8: Solving \( \cos\left(\frac{x}{2}\right) = 0 \) The solutions for \( \cos\left(\frac{x}{2}\right) = 0 \) are: \[ \frac{x}{2} = \frac{\pi}{2} + n\pi \quad (n \in \mathbb{Z}) \] This leads to: \[ x = \pi + 2n\pi \] Finding values for \( n \) such that \( 0 \leq x < 2\pi \): - For \( n = 0 \): \( x = \pi \) This gives us **1 additional solution**. ### Final Count of Solutions Now, we combine all the solutions: - From \( \cos(x) = 0 \): 2 solutions - From \( \cos(2x) + \cos(3x) = 0 \): 5 solutions - From \( \cos\left(\frac{x}{2}\right) = 0 \): 1 solution However, \( x = \pi \) is counted in both the second and third equations, so we need to avoid double counting. Thus, the total number of unique solutions is: \[ 2 + 5 + 1 - 1 = 7 \] ### Conclusion The number of real values of \( x \) that satisfy the equation \( \cos x + \cos 2x + \cos 3x + \cos 4x = 0 \) in the interval \( 0 \leq x < 2\pi \) is **7**. ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos
  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Numerical Answer Type Questions)|32 Videos
  • THE DIMENSIONAL GEOMETRY

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|25 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|20 Videos

Similar Questions

Explore conceptually related problems

If 0 le x le 2pi , then the number of real values of x, which satisfy the equation cos x + cos 2x + cos 3x + cos 4x=0 , is

If 0<=x<2 pi, then the number of real values of x, which satisfy the equation cos x+cos2x+cos3x+cos4x=0

0<=x<2 pi0<=x<2 pi ,then the number of real values of x, which satisfy the equation quad cos x+cos2x+cos3x+cos4x=0 is :(1)3(2)5(3)7(4)9

Number of values of x satisfying the equation cos(4pi/3-cos^-1x)=x is

The number of values of x in [0,2pi] satisfying the equation 3cos2x-10cosx+7=0 is

The number of values of x in [0,5 pi] satisfying the equation 3cos^(2)x-10cos x+7=0

The number of values of x in [0, 5 pi] satisfying the equation 3"cos" 2x -10 "cos" x+7=0 , is

For 0 le x le (pi)/(2) , the number of values of x satisfying the equation tan x+ sec x = cos x is

MCGROW HILL PUBLICATION-TRIGONOMETRICAL IDENTITIES AND EQUATIONS -Questions from Previous Years. AIEEE/JEE Main Papers
  1. If cos alpha+co beta=(3)/(2) and sin alpha+sin beta=(1)/(2) and theta ...

    Text Solution

    |

  2. In a Delta ABC, (a)/(b)=2+sqrt(3) and anglec=60^(@). Then the ordered ...

    Text Solution

    |

  3. If 0 le x lt 2pi, then the number of real values of x which satisfy t...

    Text Solution

    |

  4. If m and M are the minimum and the maximum values of 4+(1)/(2) sin^(2)...

    Text Solution

    |

  5. The number of x in [0, 2pi] for which |sqrt(2sin^(4)x+18cos^(2)x)-sqrt...

    Text Solution

    |

  6. The number of distinct real roots of the equation, Delta=|(cosx, sin...

    Text Solution

    |

  7. If A gt 0, B gt 0 and A+B=(pi)/(6), then the maximum value of tanA+ ta...

    Text Solution

    |

  8. Let P={theta : sin theta-cos theta=sqrt(2)cos theta} and Q={theta sin ...

    Text Solution

    |

  9. If 5(tan^(2)x-cos^(2)x)=2cos(2x)+9, then the value of cos(4x) is

    Text Solution

    |

  10. If the sum of all the solutions of the equations 8 cos x[cos(pi//6+x) ...

    Text Solution

    |

  11. For any theta in (pi//4, pi//2), the expression 3(sin theta-cos theta)...

    Text Solution

    |

  12. The value of cospi/2^(2).cospi/2^(3)……….cospi/2^(10).sinpi/2^(10) is

    Text Solution

    |

  13. If 0 le x lt pi//2 , then the number of values of x for which sin x-si...

    Text Solution

    |

  14. The sum of all values of theta in (0, pi//2) satisfying sin^(2)2theta+...

    Text Solution

    |

  15. Let alpha and beta be the roots of the quadratic equation x^(2)sin ...

    Text Solution

    |

  16. Let fk(x) = 1/k(sin^k x + cos^k x) where x in RR and k gt= 1. Then f4(...

    Text Solution

    |

  17. The maximum value of 3cos theta+5 sin(theta-pi//6) for any real theta ...

    Text Solution

    |

  18. If sin^(4)alpha+4cos^(4)beta+2=4sqrt(2) sin alpha cos beta, alpha, bet...

    Text Solution

    |

  19. If cos(alpha+beta)=(3)/(5), sin(alpha-beta)=(5)/(13) and 0 lt alpha, b...

    Text Solution

    |

  20. The value of a=cos^(2)(10^(@))-cos(10^(@))cos(50^(@))+cos^(2)(50^(@)) ...

    Text Solution

    |