Home
Class 12
MATHS
The value of "cos"^(4)(pi)/(8)+"cos"^(4)...

The value of `"cos"^(4)(pi)/(8)+"cos"^(4)(3pi)/(8)+"cos"^(4)(5pi)/(8)+"cos"^(4)(7pi)/(8)` is

A

`3//2`

B

`1//2`

C

`3//4`

D

`1//4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the value of \[ \cos^4\left(\frac{\pi}{8}\right) + \cos^4\left(\frac{3\pi}{8}\right) + \cos^4\left(\frac{5\pi}{8}\right) + \cos^4\left(\frac{7\pi}{8}\right), \] we can follow these steps: ### Step 1: Simplify the terms Notice that: - \(\cos\left(\frac{5\pi}{8}\right) = \cos\left(\pi - \frac{3\pi}{8}\right) = -\cos\left(\frac{3\pi}{8}\right)\) - \(\cos\left(\frac{7\pi}{8}\right) = \cos\left(\pi - \frac{\pi}{8}\right) = -\cos\left(\frac{\pi}{8}\right)\) Thus, we can rewrite the expression as: \[ \cos^4\left(\frac{\pi}{8}\right) + \cos^4\left(\frac{3\pi}{8}\right) + \left(-\cos\left(\frac{3\pi}{8}\right)\right)^4 + \left(-\cos\left(\frac{\pi}{8}\right)\right)^4 \] This simplifies to: \[ \cos^4\left(\frac{\pi}{8}\right) + \cos^4\left(\frac{3\pi}{8}\right) + \cos^4\left(\frac{3\pi}{8}\right) + \cos^4\left(\frac{\pi}{8}\right) \] or \[ 2\cos^4\left(\frac{\pi}{8}\right) + 2\cos^4\left(\frac{3\pi}{8}\right) \] ### Step 2: Factor out the common terms We can factor out the 2: \[ 2\left(\cos^4\left(\frac{\pi}{8}\right) + \cos^4\left(\frac{3\pi}{8}\right)\right) \] ### Step 3: Use the identity for \(A^4 + B^4\) We can use the identity: \[ A^4 + B^4 = (A^2 + B^2)^2 - 2A^2B^2 \] Let \(A = \cos^2\left(\frac{\pi}{8}\right)\) and \(B = \cos^2\left(\frac{3\pi}{8}\right)\): \[ \cos^4\left(\frac{\pi}{8}\right) + \cos^4\left(\frac{3\pi}{8}\right) = \left(\cos^2\left(\frac{\pi}{8}\right) + \cos^2\left(\frac{3\pi}{8}\right)\right)^2 - 2\cos^2\left(\frac{\pi}{8}\right)\cos^2\left(\frac{3\pi}{8}\right) \] ### Step 4: Calculate \(\cos^2\left(\frac{\pi}{8}\right)\) and \(\cos^2\left(\frac{3\pi}{8}\right)\) Using the identity \(\cos^2\theta = \frac{1 + \cos(2\theta)}{2}\): - \(\cos^2\left(\frac{\pi}{8}\right) = \frac{1 + \cos\left(\frac{\pi}{4}\right)}{2} = \frac{1 + \frac{1}{\sqrt{2}}}{2} = \frac{2 + \sqrt{2}}{4}\) - \(\cos^2\left(\frac{3\pi}{8}\right) = \frac{1 + \cos\left(\frac{3\pi}{4}\right)}{2} = \frac{1 - \frac{1}{\sqrt{2}}}{2} = \frac{2 - \sqrt{2}}{4}\) ### Step 5: Substitute back into the equation Now we can substitute these values back into our equation: \[ \cos^2\left(\frac{\pi}{8}\right) + \cos^2\left(\frac{3\pi}{8}\right) = \frac{2 + \sqrt{2}}{4} + \frac{2 - \sqrt{2}}{4} = \frac{4}{4} = 1 \] Thus, \[ \left(\cos^2\left(\frac{\pi}{8}\right) + \cos^2\left(\frac{3\pi}{8}\right)\right)^2 = 1^2 = 1 \] ### Step 6: Calculate \(2\cos^2\left(\frac{\pi}{8}\right)\cos^2\left(\frac{3\pi}{8}\right)\) Now we need to calculate \(2\cos^2\left(\frac{\pi}{8}\right)\cos^2\left(\frac{3\pi}{8}\right)\): \[ \cos^2\left(\frac{\pi}{8}\right)\cos^2\left(\frac{3\pi}{8}\right) = \frac{(2 + \sqrt{2})(2 - \sqrt{2})}{16} = \frac{4 - 2}{16} = \frac{2}{16} = \frac{1}{8} \] Thus, \[ 2\cos^2\left(\frac{\pi}{8}\right)\cos^2\left(\frac{3\pi}{8}\right) = 2 \cdot \frac{1}{8} = \frac{1}{4} \] ### Step 7: Final Calculation Putting everything together: \[ 2\left(1 - \frac{1}{4}\right) = 2 \cdot \frac{3}{4} = \frac{3}{2} \] Thus, the final value is: \[ \boxed{\frac{3}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. AIEEE/JEE Main Papers|48 Videos
  • THE DIMENSIONAL GEOMETRY

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|25 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|20 Videos

Similar Questions

Explore conceptually related problems

Find the value of cos^(4)((pi)/(8))

The value of sin^(4)(pi/8)+cos^(4)((3 pi)/8)+sin^(4)((5pi)/8)+cos^(4)((7pi)/8) is equal to =

Prove that: cos^(4)(pi)/(8)+cos^(4)(3 pi)/(8)+cos^(4)(5 pi)/(8)+cos^(4)(7 pi)/(8)=(3)/(2)

Prove that cos^(4)pi/8+cos^(4)(3pi)/(8)+cos^(4)(5pi)/8+cos^(4)(7pi)/8=3/2

Prove that: cos^(2)pi/8 + cos^(2)(3pi)/(8) + cos^(2)(5pi)/(8)+ cos^(2)(7pi)/(8)=2

cos ((pi) / (8)) cos ((3 pi) / (8)) cos ((5 pi) / (8)) cos ((7 pi) / (8)) =

The value of cos""(pi)/(9)cos""(2pi)/(9)cos""(3pi)/(9)cos""(4pi)/(9), is

MCGROW HILL PUBLICATION-TRIGONOMETRICAL IDENTITIES AND EQUATIONS -Questions from Previous Years. B-Architecture Entrance Examination Papers
  1. The number of solutions of the equation tan x+secx=2cosx lying in the ...

    Text Solution

    |

  2. For theta pi 0, if cos theta+sec theta =2, then cos^(n)theta+sec^(n)th...

    Text Solution

    |

  3. If for real p the equation sin^(6)x+cos^(6)x=p always has a real solut...

    Text Solution

    |

  4. The value of "cos"^(4)(pi)/(8)+"cos"^(4)(3pi)/(8)+"cos"^(4)(5pi)/(8)+"...

    Text Solution

    |

  5. The value of "sin"(pi)/(14)*"sin"(3pi)/(14)*"sin"(5pi)/(14) is

    Text Solution

    |

  6. Let 0 lt alpha, beta le pi//4. If cos(alpha+beta)=4//5 and sin(alpha-b...

    Text Solution

    |

  7. The sides of a triangle are sin beta, cos beta and sqrt(1+a sin 2 beta...

    Text Solution

    |

  8. If cos25^(@)+sin25^(@)=K, when cos50^(@) equals

    Text Solution

    |

  9. tan9^(@)-tan27^(@)-tan63^(@)+tan81^(@) is equal to:

    Text Solution

    |

  10. If a and b are such that a sin theta=b cos theta for 0 le theta lt (pi...

    Text Solution

    |

  11. The value of tan 9^(@) - tan 27^(@)- tan 63^(@)+ tan 81^(@) is

    Text Solution

    |

  12. In a DeltaABC, if |(1,a,b),(1,c,b),(1,b,c)|=0 then sin^(2)A+sin^(2)...

    Text Solution

    |

  13. Let (3pi)/(4) lt theta lt pi and sqrt(2cot theta +(1)/(sin^(2)theta))...

    Text Solution

    |

  14. The maximum value of f(x)=2sin x+sin2x, in the interval [0, (3pi)/(...

    Text Solution

    |

  15. For all values of theta in (0, (pi)/(2)), the determinant of the matr...

    Text Solution

    |

  16. The value of (1)/(cos(285^(@)))+(1)/(sqrt(3)sin(255^(@))) is

    Text Solution

    |

  17. If e^((sin^(2)x+sin^(4)x+…+"ad inf.")log(e )2), (0 lt x lt pi//2), sat...

    Text Solution

    |

  18. The total number of x in [0, 2pi] which satisfy the equation 4(cos^(10...

    Text Solution

    |

  19. If cos (alpha+beta)=(4)/(5) and sin(alpha-beta)=(5)/(13), where alpha,...

    Text Solution

    |

  20. If sin(alpha-beta)=(5)/(13) and cos(alpha+beta)=(3)/(5), then tan(2alp...

    Text Solution

    |