Home
Class 12
MATHS
If cos^(-1)x + cos^(-1) (2//3) = pi//2, ...

If `cos^(-1)x + cos^(-1) (2//3) = pi//2`, the value of x is

A

`1//3`

B

`sqrt(5)//3`

C

`sqrt(5)//2`

D

`1//2`

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)|28 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|10 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS |3 Videos
  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B - ARCHITECTURE ENTRANCE EXAMINATION PAPERS|11 Videos
  • JEE ( MAIN) 2020 QUESTIONS (9TH JAN-MORNING)

    MCGROW HILL PUBLICATION|Exercise JEE (Main) 2020 Questions with Solution Mathematics (9th Jan - Morning)|25 Videos

Similar Questions

Explore conceptually related problems

If sin^(-1)x+sin^(-1)y=(pi)/(3) and cos^(-1)x+cos^(-1)y=(pi)/(6), find the values of x and y.

cos^(-1)x sqrt(3)+cos^(-1)x=(pi)/(2)

Knowledge Check

  • If sin^(-1)(x-1) + cos^(-1)(x-3) + tan^(-1) x/(2-x^(2))= cos^(-1)k + pi , then the value of k is:

    A
    `1//2`
    B
    `1//sqrt(2)`
    C
    `sqrt(3)//2`
    D
    1
  • Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in [-1, -(1)/(2)) , then the value of a + b pi is

    A
    `2pi`
    B
    `3pi`
    C
    `pi`
    D
    `-2pi`
  • 3 cos^(-1)x - pi//x - pi//2=0 for

    A
    one solution
    B
    one and only one solution
    C
    no solution
    D
    more than one solution
  • Similar Questions

    Explore conceptually related problems

    If sin^(-1)x+sin^(-1)y=(2 pi)/(3) ,then the value of cos^(-1)x+cos^(-1)y is (A) (2 pi)/(3) (B) (pi)/(3) (C) (pi)/(2) (D) pi

    If x satisfies the cubic equation ax^(3)+bx^(2)+cx+d=0 such that cos^(-1)(x)+cos^(-1)(2x)+cos^(-1)(3x)=pi , then find the value of (b+c)-(a+d) .

    If cos^(-1) x = (pi)/(3) , the find the value of sin ^(-1)x .

    The number of solutions of the equation sin^(-1) (cos 3x) + cos^(-1) (sin 3x) = pi/2 , x is/a in[-pi, pi]

    If sin^(-1)x+sin^(-1)y=(2pi)/(3), cos^(-1)x-cos^(-1)y=(pi)/(3) then the number of values of (x, y) is :