Home
Class 12
MATHS
Let f: R to R be a continous function. ...

Let `f: R to R` be a continous function.
Let `theta_(n) = pi int_(1//n)^(n) f(x + 1/x) (log x)/x dx, n =1,2`,…….. Then `cos^(-1) [sum_(k=1)^(22) 1/k sin theta_(k)]`=…………………

Text Solution

Verified by Experts

The correct Answer is:
1
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise EXERCISE CONCEPT-BASED SINGLE CORRECT ANSWER TYPE QUESTIONS |10 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 1) (SINGLE CORRECT ANSWER TYPE QUESTIONS)|28 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|10 Videos
  • INDEFINITE INTEGRATION

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B - ARCHITECTURE ENTRANCE EXAMINATION PAPERS|11 Videos
  • JEE ( MAIN) 2020 QUESTIONS (9TH JAN-MORNING)

    MCGROW HILL PUBLICATION|Exercise JEE (Main) 2020 Questions with Solution Mathematics (9th Jan - Morning)|25 Videos

Similar Questions

Explore conceptually related problems

For k in N, let b_(k)=int_(1)^(e)(1)/((k+log x)(k+1+log x))(dx)/(x) and a_(n)=sum_(k=1)^(n)b_(k) Then

Let f be a positive function.If I_(1)=int_(1-k)^(k)xf[x(1-x)]dx and I_(2)=int_(1-k)^(k)f[x(1-x)]backslash dx, where 2k-1>0. Then (I_(1))/(I_(2)) is

Knowledge Check

  • Let f be a positive function. Let I_(1) int_(1-k)^(k) x.f {x(1-x)} dx, I_(2)= int_(1-k)^(k) f{x(1-x)}dx where 2k-1 gt 0 , then I_(1)//I_(2) is

    A
    2
    B
    k
    C
    `1//2`
    D
    1
  • Let a function f:R to R be defined as f (x) =x+ sin x. The value of int _(0) ^(2pi)f ^(-1)(x) dx will be:

    A
    `2pi^(2)`
    B
    `2pi^(2)-2`
    C
    `2x ^(2) +2`
    D
    `pi^(2)`
  • The value of integral sum _(k=1)^(n) int _(0)^(1) f(k - 1+x) dx is

    A
    ` int _(0)^(1) (x) dx`
    B
    `int _(0)^(2) f(x) dx`
    C
    ` int _(0)^(n) f(x) dx`
    D
    ` n int _(0)^(1) f(x) dx`
  • Similar Questions

    Explore conceptually related problems

    Let a_(n)=sum_(k=1)^(n)(1)/(k(n+1-k)), then for n>=2

    int_(n)^(n+1)f(x)dx=n^(2)+n then int_(-1)^(1)f(x)dx=

    If (K_n)/( L_n)= 1024 where K_(n) = int_(0)^(1) x^(n) (2-x)^(n) dx, L_(n) = int_(0)^(1) x^(n) (1-x)^(n) dx , then n is equal to

    Let f _(n)(x) = (sin x )^(1//pi) , x in R, then:

    Let f _(n)(x) = (sin x )^(1//pi) , x in R, then: