Home
Class 12
MATHS
Prove that |[1,a,bc] , [1,b,ca], [1,c,ab...

Prove that `|[1,a,bc] , [1,b,ca], [1,c,ab]|=|[1,a,a^2] , [1,b,b^2] , [1,c,c^2]|`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show without expanding at any stage that: [1,a,bc],[1,b,ca],[1,c,ab]|=|[1,a,a^2],[1,b,b^2],[1,c,c^2 ]|

Show without expanding at any stage that: [a,a^2,bc],[b,b^2,ca],[c,c^2,ab]|=|[1,a^2,a^3],[1,b^2,b^3],[1,c^2,c^3]|

Prove: |(1,a, b c),(1,b ,c a),(1,c ,a b)|=|(1,a ,a^2),( 1,b,b^2),( 1,c,c^2)|

Without expanding the determinant prove that abs([a,a^2,bc],[b,b^2,ca],[c,c^2,ab])=abs([1,a^2,a^3],[1,b^2,b^3],[1,c^2,c^3])

|[1,a^(2),bc],[1,b^(2),ca],[1,c^(2),ab]|

1,bc,b+c1,ca,c+a1,ab,a+b]|=det[[1,a,a^(2)1,b,b^(2)1,c,c^(2)]]

Delta=det[[1,a,bc1,b,ca1,c,ab]]

|[1,a, bc] ,[1, b, ca], [1, c, ab]| = (a-b)(b-c)(c-a)

Prove that |[1,1,1] , [a,b,c] ,[a^2-bc, b^2-ca, c^2-ab]|=0