Home
Class 12
MATHS
The value of sin^(-1) (sin 12) - cos^(-1...

The value of `sin^(-1) (sin 12) - cos^(-1) (cos12)` is equal to :

A

zero

B

`24-2pi`

C

`24-8pi`

D

`4pi-24`

Text Solution

Verified by Experts

The correct Answer is:
C

`sin^(-1)(sin 12) =12 -4pi`
`cos^(-1) (cos12) =4pi -12`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sin^(-1) (sin 12) + cos^(-1) (cos 12) is equal to

Find the value of sin^(-1) (sin 12) and cos^(-1) (cos 12)

The value of sin^(-1)(sin12)+sin^(-1)(cos12)=

The value of cos^(-1) (cos 12) - sin^(-1)(sin 14) is

The value of sin^(-1)((12)/(13)) - sin ^(-1)((3)/(5)) is equal to (A) pi-sin ^(-1) ((63)/(65)) (B) (pi)/(2) - sin ^(-1)((56)/(65)) (C) (pi)/(2) - cos ^(-1)((9)/(65)) (D) pi - cos ^(-1)((3)/(65))

The value of sin^(-1)sin17+cos^(-1)cos10 is equal to

The value of cos^(-1)(cos12)-sin^(-1)(sin12) is

cos^(-1) (cos (-5)) + sin^(-1) (sin(6)) - tan^(-1)(tan (12)) is equal to : (The inverse trigonometric functions take the principal values)