Home
Class 12
MATHS
If cos^(-1)x +cos^(-1)y +cos^(-1)z =3pi ...

If `cos^(-1)x +cos^(-1)y +cos^(-1)z =3pi` then `x+y+z` is :

A

`-3`

B

0

C

3

D

`-1`

Text Solution

Verified by Experts

The correct Answer is:
A

`cos^(-1)x =cos^(-1)y = cos^(-1)z =pi rArr x=y=z=-1`
Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , then

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , then

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , then

If cos^(-1)x + cos^(-1)y + cos^(-1)z = pi , then x^(2) + y^(2) + z^(2) + 2xyz is :

If cos^(-1)x+cos^(-1)y+cos^(-1)z=3 pi, then xy+yz+zx is equal to

If sin^(-1)x +cos^(-1)y +sin^(-1)z=2pi then 2x-z+y is :

If cos^(-1)x + cos^(-1)y - cos^(-1) z = 0 , then show that x^(2) + y^(2) + z^(2) - 2xyz = 1

If : cos^(-1)x+cos^(-1)y+cos^(-1)z=3pi, " then :" x (y+z)+y(z+x)+z(x+y)=