Home
Class 12
MATHS
If "sin"^(-1)(1)/(3)+"sin"^(-1)(2)/(3)=s...

If `"sin"^(-1)(1)/(3)+"sin"^(-1)(2)/(3)=sin^(-1)x`, then the value of x is

A

0

B

`((sqrt(5)-4sqrt(2)))/9`

C

`((sqrt(5)+4sqrt(2)))/9`

D

`(pi)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1}\left(\frac{1}{3}\right) + \sin^{-1}\left(\frac{2}{3}\right) = \sin^{-1}(x) \), we will use the identity for the sum of two inverse sine functions. ### Step 1: Identify the values of A and B Let: - \( A = \frac{1}{3} \) - \( B = \frac{2}{3} \) ### Step 2: Use the identity for \( \sin^{-1}(A) + \sin^{-1}(B) \) The identity states: \[ \sin^{-1}(A) + \sin^{-1}(B) = \sin^{-1}\left(A \sqrt{1 - B^2} + B \sqrt{1 - A^2}\right) \] ### Step 3: Calculate \( \sqrt{1 - B^2} \) and \( \sqrt{1 - A^2} \) First, we calculate \( \sqrt{1 - B^2} \): \[ B^2 = \left(\frac{2}{3}\right)^2 = \frac{4}{9} \implies 1 - B^2 = 1 - \frac{4}{9} = \frac{5}{9} \implies \sqrt{1 - B^2} = \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{3} \] Now, we calculate \( \sqrt{1 - A^2} \): \[ A^2 = \left(\frac{1}{3}\right)^2 = \frac{1}{9} \implies 1 - A^2 = 1 - \frac{1}{9} = \frac{8}{9} \implies \sqrt{1 - A^2} = \sqrt{\frac{8}{9}} = \frac{2\sqrt{2}}{3} \] ### Step 4: Substitute into the identity Now substitute \( A \), \( B \), \( \sqrt{1 - B^2} \), and \( \sqrt{1 - A^2} \) into the identity: \[ \sin^{-1}\left(\frac{1}{3} \cdot \frac{\sqrt{5}}{3} + \frac{2}{3} \cdot \frac{2\sqrt{2}}{3}\right) \] ### Step 5: Simplify the expression Calculate each term: 1. First term: \[ \frac{1}{3} \cdot \frac{\sqrt{5}}{3} = \frac{\sqrt{5}}{9} \] 2. Second term: \[ \frac{2}{3} \cdot \frac{2\sqrt{2}}{3} = \frac{4\sqrt{2}}{9} \] Combine these: \[ \sin^{-1}\left(\frac{\sqrt{5}}{9} + \frac{4\sqrt{2}}{9}\right) = \sin^{-1}\left(\frac{\sqrt{5} + 4\sqrt{2}}{9}\right) \] ### Step 6: Set equal to \( \sin^{-1}(x) \) Since \( \sin^{-1}\left(\frac{\sqrt{5} + 4\sqrt{2}}{9}\right) = \sin^{-1}(x) \), we have: \[ x = \frac{\sqrt{5} + 4\sqrt{2}}{9} \] ### Conclusion The value of \( x \) is: \[ x = \frac{\sqrt{5} + 4\sqrt{2}}{9} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(-1)3x

If sin^(-1)((5)/(x))+sin^(-1)((12)/(x))=sin^(-1)((2)/(x))+cos^(-1)((2)/(x)) then the value of x is equal to

If sinx=1/(3) , then the value of sin3x is

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2 , then write the value of x+y+z .

If (sin^(-1)x)^2+(sin^(-1)y)^2+(sin^(-1)z)^2=3/4pi^2 , find the value of x^2+y^2+z^2 .

If (sin^(-1)x)^2+(sin^(-1)y)^2+(sin^(-1)z)^2=3/4pi^2 , find the value of x^2+y^2+z^2 .

int sin^(5//2)x cos^(3)x dx = 2 sin^(A//2)x[(1)/(B)-(1)/(C) sin^(2)x]+D , then the value of (A+B)-C is equal to ........ .

If sin^(- 1)(x)+sin^(- 1)(2x)=pi/3 then x=

If 0

Let x_i in [-1,1]" for "i=1,2,3,…24 , such that sin^(-1)x_1+sin^(-1)x_2+…+sin^(-1)x_24=12pi then the value of x_1+2x_2+3x_3+…+24x_24 is