Home
Class 12
MATHS
Number of roots of cos^2x+(sqrt(3)+1)/2s...

Number of roots of `cos^2x+(sqrt(3)+1)/2sinx-(sqrt(3))/4-1=0` which lie in the interval `[-pi,pi]` is 2 (b) 4 (c) 6 (d) 8

A

2

B

4

C

6

D

8

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of solution(s) of the equation cos2theta=(sqrt(2)+1)(costheta-1/(sqrt(2))) , in the interval (-pi/4,(3pi)/4), is 4 (b) 1 (c) 2 (d) 3

The number of solutions of the equation cos6x+tan^2x+cos(6x)tan^2x=1 in the interval [0,2pi] is (a) 4 (b) 5 (c) 6 (d) 7

The number of distinct real roots of |sinxcosxcosxcosxsinxcosxcosxcosxsinx|=0 in the interval -pi/4lt=xlt=pi/4 is 0 (b) 2 (c) 1 (d) 3

The number of solutions of the equation cos6x+tan^2x+cos6xtan^2x=1 in the interval [0,2pi] is 4 (b) 5 (c) 6 (d) 7

Number of critical points of the function. f(x)=(2)/(3)sqrt(x^(3))-(x)/(2)+int_(1)^(x)((1)/(2)+(1)/(2)cos2t-sqrt(t)) dt which lie in the interval [-2pi,2pi] is………. .

The arithmetic mean of the roots of the equation 4cos^3x-4cos^2x-cos(315pi+x)=1 in the interval (0,315pi) is equal to (A) 50pi (B) 51pi (C) 100pi (D) 315pi

One of the root equation cosx-x+1/2=0 lies in the interval (0,pi/2) (b) (-pi/(2,0)) (c) (pi/2,pi) (d) (pi,(3pi)/2)

The variable x satisfying the equation |sinxcosx|+sqrt(2+tan^2+cot^2x)=sqrt(3) belongs to the interval [0,pi/3] (b) (pi/3,pi/3) (c) [(3pi)/4,pi] (d) none-existent

The variable x satisfying the equation |sinxcosx|+sqrt(2+tan^2+cot^2x)=sqrt(3) belongs to the interval [0,pi/3] (b) (pi/3,pi/3) (c) [(3pi)/4,pi] (d) none-existent

Number of roots of the equation sinx+cosx=x^2-2x+sqrt(6) is (A) 0 (B) 2 (C) 4 (D) an odd number