Home
Class 12
MATHS
If y=log(10)x+log(x)10+log(x)x+log(10)10...

If `y=log_(10)x+log_(x)10+log_(x)x+log_(10)10` then what is `((dy)/(dx))_(x=10)` equal to?

A

`1/(x log_(e)10)-(log_(e)10)/(x(log_(e)x)^(2))`

B

`1/(xlog_(e)10)-1/(xlog_(10)e)`

C

`1/(x log_(e)10)-1/(log_(e)x)^(2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given expression for \( y \): ### Step 1: Write down the expression for \( y \) \[ y = \log_{10} x + \log_{x} 10 + \log_{x} x + \log_{10} 10 \] ### Step 2: Simplify the expression Using the change of base formula for logarithms, we can rewrite \( \log_{x} 10 \) and \( \log_{x} x \): \[ \log_{x} 10 = \frac{\log_{10} 10}{\log_{10} x} = \frac{1}{\log_{10} x} \] \[ \log_{x} x = 1 \] \[ \log_{10} 10 = 1 \] Substituting these into the expression for \( y \): \[ y = \log_{10} x + \frac{1}{\log_{10} x} + 1 + 1 \] \[ y = \log_{10} x + \frac{1}{\log_{10} x} + 2 \] ### Step 3: Differentiate \( y \) with respect to \( x \) Now, we differentiate \( y \): \[ \frac{dy}{dx} = \frac{d}{dx} \left( \log_{10} x \right) + \frac{d}{dx} \left( \frac{1}{\log_{10} x} \right) + 0 \] The derivative of \( \log_{10} x \) is: \[ \frac{d}{dx} \left( \log_{10} x \right) = \frac{1}{x \ln 10} \] For the second term, we use the quotient rule: \[ \frac{d}{dx} \left( \frac{1}{\log_{10} x} \right) = -\frac{1}{(\log_{10} x)^2} \cdot \frac{d}{dx} \left( \log_{10} x \right) = -\frac{1}{(\log_{10} x)^2} \cdot \frac{1}{x \ln 10} \] Combining these results, we have: \[ \frac{dy}{dx} = \frac{1}{x \ln 10} - \frac{1}{x (\log_{10} x)^2 \ln 10} \] ### Step 4: Factor out common terms Factoring out \( \frac{1}{x \ln 10} \): \[ \frac{dy}{dx} = \frac{1}{x \ln 10} \left( 1 - \frac{1}{\log_{10} x^2} \right) \] ### Step 5: Evaluate at \( x = 10 \) Now, we evaluate \( \frac{dy}{dx} \) at \( x = 10 \): \[ \log_{10} 10 = 1 \] Substituting \( x = 10 \): \[ \frac{dy}{dx} \bigg|_{x=10} = \frac{1}{10 \ln 10} \left( 1 - \frac{1}{1^2} \right) = \frac{1}{10 \ln 10} (1 - 1) = \frac{1}{10 \ln 10} \cdot 0 = 0 \] ### Final Answer Thus, the value of \( \frac{dy}{dx} \) at \( x = 10 \) is: \[ \frac{dy}{dx} \bigg|_{x=10} = 0 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=log_(10)x+log_(e)x+log_(10)10 , then find (dy)/(dx)

If log_(10)x+log_(10)y=2, x-y=15 then :

If "log"_(e) 2."log"_(x) 27 = "log"_(10) 8."log"_(e) 10 , then x =

If (1)/("log"_(x)10) = (2)/("log"_(a)10)-2 , then x =

If y = log_(10) x , then the value of (dy)/(dx) is

if x+log_10 (1+2^x)=xlog_10 5+log_10 6 then x

If ln((e-1)e^(xy) +x^2)=x^2+y^2 then ((dy)/(dx))_(1,0) is equal to

If ln((e-1)e^(xy) +x^2)=x^2+y^2 then ((dy)/(dx))_(1,0) is equal to

solve log_(10)(x+5)=1

If log_(10)(x-1)^3-3log_(10)(x-3)=log_(10)8,then log_(x)625 has the value equal to :