Home
Class 12
MATHS
If the value of (1+tan 1^(@))(1+ tan 2...

If the value of
`(1+tan 1^(@))(1+ tan 2^(@)) (1+tan 3^(@))`……….(1+ tan 45) Is `2^(lambda)`, then the sum of the digits of the number `lambda` is

A

3

B

6

C

5

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ (1 + \tan 1^\circ)(1 + \tan 2^\circ)(1 + \tan 3^\circ) \ldots (1 + \tan 45^\circ) \] and find the value of \(\lambda\) such that this expression equals \(2^\lambda\). ### Step 1: Understanding the Identity We can use the identity derived from the angle addition formula for tangent. If \(a + b = 45^\circ\), then: \[ (1 + \tan a)(1 + \tan b) = 2 \] This means that for any two angles \(a\) and \(b\) such that \(a + b = 45^\circ\), the product of \(1 + \tan a\) and \(1 + \tan b\) equals 2. ### Step 2: Pairing the Terms We can pair the terms in our original product: - Pair \(1^\circ\) with \(44^\circ\) - Pair \(2^\circ\) with \(43^\circ\) - Pair \(3^\circ\) with \(42^\circ\) - ... - Pair \(22^\circ\) with \(23^\circ\) This gives us the following pairs: \[ (1 + \tan 1^\circ)(1 + \tan 44^\circ), (1 + \tan 2^\circ)(1 + \tan 43^\circ), \ldots, (1 + \tan 22^\circ)(1 + \tan 23^\circ) \] ### Step 3: Counting the Pairs Each of these pairs evaluates to 2, and there are 22 pairs from \(1^\circ\) to \(22^\circ\). Additionally, we have the term \(1 + \tan 45^\circ\): \[ 1 + \tan 45^\circ = 1 + 1 = 2 \] ### Step 4: Total Product Calculation Thus, the total product can be expressed as: \[ (1 + \tan 1^\circ)(1 + \tan 2^\circ) \ldots (1 + \tan 45^\circ) = 2^{22} \times 2 = 2^{23} \] ### Step 5: Finding \(\lambda\) From the equation, we have: \[ 2^{\lambda} = 2^{23} \] Thus, \(\lambda = 23\). ### Step 6: Sum of the Digits of \(\lambda\) Now, we need to find the sum of the digits of \(\lambda\): \[ \text{Digits of } 23: 2, 3 \] Sum of the digits: \[ 2 + 3 = 5 \] ### Final Answer The sum of the digits of the number \(\lambda\) is: \[ \boxed{5} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (1-tan^2 15^@)/(1+tan^2 15^@) is

If (1+tan1^(@)) *(1+tan2^(@))*(1+tan3^(@)) …….(1+tan45^(@)) = 2^(n) , then 'n' is equal to :

The value of cos(tan^-1 (tan 2)) is

Prove that (1+ tan 1^@ ) (1+ tan 2^@ )...(1+ tan 45º )= 2^23

Prove that (1+ tan 1^@ ) (1+ tan 2^@ )...(1+ tan 45^@ )= 2^23

The value of tan^(-1)1+tan^(-1)2+tan^(-1)3 is

The value of "tan"1^(@)."tan"2^(@)."tan"3^(@)......."tan"89^(@) is

The vlaue of tan^(-1)1/2+tan^(-1)1/3 is

Value of "tan" (1)/(3) (tan^(-1)x + "tan"^(-1) (1)/(x))

The value of tan1^@tan2^@tan3^@...tan89^@ is